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ABSTRACT

In this paper, we study the construction of dyadic wavelet packet frames on a positi

Fourier transform.

Keywords: Wavelet Packet; Frame; Walsh Function; Walsh-Fourier Transfo,

1. Introduction and Preliminaries

Frames in Hilbert space were introduced by Duffin and
Schaffer [1] in 1952, in the context of non-harmonic
Fourier series. Couple of years later, frames were brought
to life by Daubechies, Grossmann and Meyer [2]. Frames
are generalizations of orthonormal basis. The linear i
dependence property for a basis, which allows eve
vector to be uniquely represented as a linea
tion.

The theory of frames are widely use

In recent years, wavelets
many different setting see fi
schneider [4], Papadakis [5

Various authors studie

, Christensen [12,13],
Protosov and Farkov [12 arkov [15], Shah and Deb-
nath [16], Ahmad and Iqbal'[17,18]. Motivated by these
authors, in this paper, we extended our results to dyadic
wavelet packet frames on the positive half line R".
Let R*=[0,+x) be the positive half line and

0" ={0,1,2,---.} . Let us denote the integer and fractional
parts of a number xe®R* by [x] and {X}, respec-
tively. Then, for each X € R" and any positive integer j,
we set

X; =[2'x](mod2), x ; =[2"7x](mod2). (1)

For each xe R, these numbers are the digits of a
binary expansion
x=[x]+{x} =2 %27 "+ 3" x;270.

j<0 j>0

Copyright © 2013 SciRes.

Itis

there exists k = k(X) in N such that X_ =0 for
all .
binary dyadic addition on R* is defined by

X® y:Z|xj —yj|2""1 +Z|xj —yj|2’j,
j<0 j>0

where X;,y; are defined in (1). Moreover, we note that
X®y=x0y=0, where © denotes the substitution
modulo 2 on R*.

For xe[0,1),let @ (X) be given by

1, if xe[0,1/2),
0% (X) — ) [ )
-1, if xe[1/2,1).
The extension of the function @, to R is denoted
by the equality , (x+1)=a,(x) forall xeR". Then,

the generalized Walsh functions {a)n (x):nel *} are
defined by

w, =1, wn(x)znﬁ:o(wl(zix))”" ,neN,xeR", (2)

=~

n:ZyJ—Zj, e e{O,l}, M =1, k:k(n).

j=0

Note that the Walsh functions almost behave like
characters with respect to dyadic addition, namely

o,(x®Yy)=w,(X)w,(y), nell, x,ye[0,1). (3)

Thus, for each fixed y, equality (3) is valid for all
xeR* except countably many of them.
For x,y e R, let
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2(xy)= (—l)a(x’y) , where
a(x,y)zi(x Yo+ XY, )
and X;,y; are given by (1). Note that
;((X,T"m):;((Z’"X,m):a)m (2’"X),

for all Xe[O 27") and m,nel*. It is shown by
Golubov et al. [19] that both the system { ;((a,')}

and {;((~,a)}j:0

The Walsh Fourier transform of a function f el (ER*)
is defined by

(4)

a=0

are orthonormal bases in L’ [0,1).

o T (¥) 2(x 0)dx,

f(w)=

where y(X,®) is given by (4). The properties of the
Walsh Fourier transform are quite similiar to those of the
classical Fourier transform [19-21]. In particular,

fe LZ(S?),then fel? {,‘JT) and

|f
By a dyadic interval of range n in [0,1), we mean

intervals of the form

=[k2™,(k+1)2

oy Nl ®

- ), kel™.
It is easy to verify that

1501 =@, k=1 and [J;1F =

fore, it follows that for each
tion @, (x) is piecewise c
Thus @;(x)=1 for xelg.
neN, we denote i
which contains X b

nce continuous.
xe[0,1) and

where 0<k <2" is uniquely determined by the rela-
tionship X e I(n) (X)

By a Walsh polynomial, we mean a finite linear com-
bination of Walsh functions. Thus, an arbitrary Walsh
polynomial of order n can be written as

w(x)ngjwj(x), ™

where the b; are complex coefficients. Since @, (x) is
constant on I(n (X) , for each 0< j<2", therefore, each
Walsh polynomial is a dyadic step function and vice
versa [19,21].

Let ¢, (93*) be the space of dyadic entire functions
of order n, that is, the set of all functions which are con-

Copyright © 2013 SciRes.

stant on all intervals of range n. Thus, for every
feeg, (SR*) , we have

f(x):Zf(z‘jk);(,n(x), xeR". ®)
k=0
Clearly, each Walsh polynomial of order 2" be-
longs to &, (iﬁ’*) . The set g(iR*) of dyadic entire
functions on K™ is the union of all the spaces ¢, (iﬁ’*)
It is clear that &(R*) is dense in LP ER+), I<p<oo,
and each function in g(iR*) is of compact support and
so is its Walsh Fourier transform. Thus , we will consider
the following set of functions:

g’ <€R+):{f ee‘(iW - suppf CEW\{O}}. )

A system of elements a Hilbert space H is
called a frame for H1 two +ve numbers A

is said to be tight. The frame is called
to be a frame whenever any single
leted from the frame.

e copfinuous wavelet transformation of a L*-func-
ith respect to the wavelet y, which satisfies
issibility condition, is defined as:

(T £)(ab)=la " " 1 (1) (t 2,
a,beR",a=0.

The term wavelet denotes a family of functions of the
form v, _|a| v ( (t-b) /a), obtained from a single
function y by the operation of dilation and translation.

For a function y e L’ (iR*), we define the following
operators as follows:

Translation: Ty (X)=y(x-a),xeR",a>0.

Modulation: an/(x) = ez’“axt//(x) xeR",a>0.

Dilation: D,y(x |a| w(x/a),forallxeR*,a>0.

2. Wavelet Packets on R*

We have the following sequence of functions due to
Wickerhauser [22]. For | e Z*

v (X)=v2 ay, (2x—k) and
kel .
(1)
Yorn (X) = \/EKZ: by, (ZX— k)’
el
where a={a,} is the filter such that

Done Bna@nn =Sas Do By =2 and b :(_l)k 8 -

For 1=0 in (i), we get
vo (X)=v, (2%) +v, (2x-1),
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v (X) =w (2%) -y, (2x-1),

where , is a scaling function and may be taken as a
characteristic function. If we increase |, we get the
following

v, (X) =, (2X) +y, (2x 1),
ws (X) =, (2X) -y, (2x-1)

v, (X) =, (4X) +y, (4x=1)+y, (4x—2)+y, (4x-3)
and so on.

Here y, ’s have a fixed scale but different frequencies.

They are Walsh functions in [0,1) . The functions
v, (t—k), for integers k, | with 1>0, form an or-
thonormal basis of L*(R").
Theorem 2.1. For every partition P of the non-nega-
tlve integers 1nt0 the sets of the form
{2’| (|+1) 1, the collection of functions
W,Jk_zlzw,(zl —k), 1eZ’, jeZ, keZ', is an
orthonormal basis of L* (,‘R*)

Dyadic Wavelet Packet Frames on R*

For any function y, e * (9”1‘* , we consider the system
of function {y/,;j‘k} , J,keZxZ" in L’ (9”1‘2) and
leZ"' as,

{V/I;j,k (x)= 2y, (2j XO k):

j,keZxZ*,I| eZ*,XeﬂT'}.

L (‘.R*) if there exists constant
such that

cf[f

<22

lez* Je

>‘2 ~ fA(g)t/}, (215){

Lemma2.l. Let feég’ (iR*) and y, bein L2(€R+) If esssup_ . D

for all fel’ (iR”) The constants C and D are called
frame bounds. If C = D, the frame is said to be tight. The
frame is called exact if it ceases to be a frame whenever
any single element is deleted from the frame.

Since the set ¢ iR*) is dense in LP ER+), I<p<ow
and is closed under Walsh-Fourier transform, the set
g’ (9&’*) defined by (9) is also dense in L (‘R*) .

Therefore, the system given in (10) is frame for
L*(%") if the inequalities in (11) holds for all
feg (5R+ ) .

For jeZ,meZ"*, we have

Lo o (27¢)ac = [ (27¢ +2im)ac
‘ 279¢)d¢.
L’ (i)T) , then

Fin($) @ (27¢)dg
) (2 g“@m) Now for
* be the function defined by

Fi(6)=2 2 Fiyn(<).

leZ* meZ”*

Then, clearly F, (¢@2))=F (), for all ¢eR*
view of (8), we have ,

Fi(¢)= T (F)a(27¢). ¢ <[0.2)

0, (F)=2"F () (27¢)ac.

Applying Parseval’s formula and the fact that
{w,:n>0} forms n orthonormal basis for L*[0,1], we
obtain,

> > f(¢c@2im)y, (2ig@m)}d§. (12)

leZ*mez”*

y/l( cj)‘ <+o0, then

jell

PR i =1 F(©) 7 (27¢) ag+R(1). (13)
where
R(N=T X3, () (27¢) F(¢ @2 m)yy (27 @m)dc. (14)

lez* jeZmeN

Furthermore, the iterated series in (14) is absolutely convergent.

Proof. From (12) we have

vl - 2T
= sz«ﬁ*

Il jel

Copyright © 2013 SciRes.

o (ef <T@ (e T (cormpp 2z omac |

](2—14)‘2 dZ +R(f).
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Since esssup,__,. Z|eu+zlem

ZZZ‘ Wik ‘ =l

len* jel kel *

g ( e )‘ < +o0, and therefore, by the Levi’s Lemma, we obtain

(2 J;)‘ d¢ +R(f).

Now we claim that the itrated series in (14) is absolutely convergent. To do this, let

=2 > 30| f(

le* jell meN
—zzzwj\w i
Note that
1 () (¢ @m)|<12(yn (<) +in (¢ @m) ).

Therefore, it suffices to prove that

Yy X2 |f(2e)f(2'¢e2'm)y

len + jell meN

() d¢ <o,
(15)

Since m#0(meN) and f ¢’ (‘R*), therefore J >
0 such that for all |j|>J,

f(2'¢)f(2'¢@2'm)=0.

On the other hand for each fixed |j| <J and £ eR,

there exists a constant M such that for all m> M
f(2'¢@2'm)=0.
Thus, it follows that only a finite number @

the iterated series in (15) are non zero. G @ S
there exists constant C such that

This fact shows that iterated/Seri bsolutely

convergent.

in (14)

3. Main Results

Theorem 3.1. If |y,
wavelet packet frame in
and D, then

SYAYAN eZ+} isa
with frame bound C

R

v (2*14)‘2 <D, ae CeW.  (16)

leZ" j€Z
Proof. For f e g(iR*)
Equation (12),
<fs‘//|;j,k >‘2

L fOw(27¢)
{ZZf(;@z’ ) ( J;@m)}dg

el mez*

and y, el’ (iR*), now by

. 2
Let Sj be the set of all regular points of ‘1/7, (2"{ ) ,

Copyright © 2013 SciRes.

)i (27¢) F(c@2m)yy (27 ¢ @m)|ag

Ot (com)y(ce m)‘d;.

which means that for each xe S,
( é’)‘ dé’—)‘l/?l 2"j§)‘2,asn—>oo.

eans (U _ SJC)—O
Then, for each fixed

2"

§—xely

Then means (84c
[23], now let &, —
positive integer T,

PIDIDI

b
()]
Wik >‘
j2-Tlel tkel *

_ t
B j;r-[{*"t(x)z

By letting t—>o0 and T — o consecutively, we
obtain

v, (2*1'4;)‘2 d¢ <D.

n(2i¢) <

22

lez* JeZ

which is the right inequality of (16).
In order to prove the left inequality of (16), let

ZZZ <f l//ljk>‘ =l +1,

*jellken®

where

<f,l//|;j’k>‘2 and

<f’l//|;j,k>‘2'

Since {y/,;j,k(x)} is a frame for LZ(EW) , SO,
I, 2C—1,. As we have already shown it that

I, =z|€Z+ZJ> T Wl ( J§0)

prove that I, >0 as T — . By (12) and the Cauchy-
Schwartz inequality, we obtain

|1:ZZZ

lel* j>-Tkel *

lel* j<=Tkel*

therefore, it is enough to
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f(cormpiizzom ac)

RAGIAER g)r dg}vz {

If £+2'med, @1, then for each fixed j<-T,we as

05'23222{

lezt J<-Tmez*

have |2"m|32’t and hence |m|<277. Consequently, |2jé'0|=2125 <22 and |, ()< Iy (X).

by the Walsh Fourier transform of f, the number of

Since It's are mutual disjoint, therefore, it can be

summation index m is bounded by 27"/, Thus > ;
s easily verified that
< 275 (), (27 ‘d ,
22 2 Juo[F (&) (27¢)| ag - 20+ (N2 + 1, () =2, (19)
2
<IZ ZTLJ@H C)| d¢. foreach j, < j,<-T.
VAN

Applying (18) and (19) in , We obtain,

For given ¢>0 and ¢, #0, we choose T such that

O d¢ <e

27 <|g,[=2"and | i (

Then, we have

208, +1_ 1+t( )< I (x ) Vji<T (18)

C, —lnfme[1 2]|:er§‘y}l (214')‘2 ~ z

m=0| it jell

Dy, =P LZD: ]Z

Then {D Tky/,(x)

(i.k EZ><ZJr lez* }

Proof. For a function f e L? (‘.R+ ),

< —k21 Dz*jl';/|>2

V/l o ‘
J F 0 (2 T0)e ag]

Sy X [(1.0,Tw

lez* JeZkez*

=222

lez* jelker*,

D, Ei) -Z XY

lez* JjeZker*

dg‘ DDA

lez* JeZ kez*

2

-3y )y, (27¢ om)| a

-2 Ti(cozn2iconX (coim)y (2 om)as
—Z]Z;j fleo2i)i(27¢on) X (¢o2m)y (27¢ om)de
- X3 A @neTOX (¢ o2m) (27 om)ac
ZZZf< ) f(¢o2'm)in (27¢)v (2 ¢ om)dg

¢ ace XY Y[ F () T(co2m) i (27¢)0 (2 com)as = ().

Jz*
m#0|e7* jeZ

Applying the Cauchy-Schwarz inequality twice, we have

Copyright © 2013 SciRes. AJCM
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@=L ff T

lez*t j€Z

m=0|c7™* je

~\f‘<:ezjm>\<\w. <z-ic>Hw| (rcom))

(L]

f(co2! m)‘2 ‘!/7, (27 ;)HV;, (27¢e m)‘dg’)

O =3

lez* j€Z

IS RIS 35 3)

m#0|cz* JeZ

. ( .[w

< m*

) T2

lez*t j€Z

v (2! )\ d¢ +(a")(a").

The terms (a') and (") are actually identical (use
the change of variable ¢ — ¢ +2'm in (a")), so by

(&) DX

lez* JeZ

G ( q

Y>> [(f.0,m

lez* JeZkez*

( - m*
<y

ig)r

Thus,

A similar conclusion shows
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