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ABSTRACT 

The flow of viscous incompressible fluid through a tube is considered. The similarity transformation is used to reduce 
the governing equations into nonlinear ordinary differential equation. The solution procedure includes application of 
long series analysis with polynomial coefficients. The series representing physical parameters ( ,  1f   1f  ) reveal 

qualitative features which are comparable to pure numerical results. The analysis enables in extending region of validity. 
A complete description of the solutions is presented. 
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1. Introduction 

Unsteady flows produced by a simple contraction or ex-
pansion of the wall have wide applications, for example, 
in physiological pumps, peristaltic motion Jafrin [1] pro- 
blems involving collapsible tubes etc. Bertram et al. [2]. 
The unsteady flow of a viscous fluid produced by con-
traction of the walls of a vessel with one end closed has 
applications to:  

1) Flow through a thin veins where the flow is con-
trolled by a valve system; 

2) Flow in coronary arteries which are subjected to a 
varying external pressure. 

Secomb [3] extended the analysis of earlier authors for 
the channel with pulsating walls.  

The field of computational fluid dynamics demands 
innovative new methods for the flow conditions. The 
explosive growth of numerical algorithms and easy ac-
cess to bigger and faster computers are keeping in phase 
with each other. The expressions of the theoretical physi-
cists and others are presenting new scenarios and novel 
methods in harnessing the remarkable power of digital 
computers. One method in this class is the semi-analyti- 
cal semi numerical technique of computer extended se- 
ries solution. Van Dyke [4] pioneered the use of long 
series analysis in fluid dynamics. In an earlier study Bu- 
jurke et al. [5] also successfully used this method. 

In this paper, we investigate the problem of unsteady 
flow in contracting or expanding pipe, studied by Skalak 
and Wang [6] using long series methods. This problem 
Figure 1 for some particular choice of a(t), admits simi-
larity transformation leading to a nonlinear differential 

equation. The initial approximations enable us, in pro-
posing a series expansion with polynomial coefficients to 
calculate enough terms (universal coefficients) by com-
puter. Using a Domb-Sykes plot we find the nature and 
location of singularity restricting the convergence of the 
singularity. Then the problem is also analysed using 
Pade’ approximants and other useful techniques. 

2. Mathematical Formulation 

Let the inside tube be prescribed by a(t). The Navier- 
Stokes equations then admit similarity solutions if  

  0 1a t a t                (2.1) 

where  and 0a   are constants. 
Let u and v be the velocities in cylindrical polar co- 

ordinate system in the directions of z and r respectively. 
Then the following transformations  
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where   is normalized radius, p is the pressure,   
density,   Kinematic viscosity. The constant A and the  *Corresponding author. 
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Figure 1. The coordinate axes. 
 
function  are to be determined from the boundary 
conditions. 
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Using above equations, the Navier-Stokes equations 
take the form 

 2 2f f S f f f f ff             0   (2.8) 

with the boundary conditions  
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Here S is a squeeze number defined by 
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3. Method of Solution 

We seek the solution of (2.8) in power series of S in the 
form 
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Substituting (3.1) into (2.8) and equating the like  

powers of S on both sides, we get 

0 02f f                  (3.2) 
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The relevant boundary conditions take the forms 
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The solutions of the above equations up to  2O S  are 
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4. Computer Extended Series 

As the series (3.5) is slowly converging it is not reliable 
to analyze the problem accurately with just few terms. It 
is essential to get higher approximations. As one pro-
ceeds to higher approximations the algebra becomes 
cumbersome and it is difficult to calculate the terms 
manually. We propose a systematic series with polyno-
mial coefficients which is quite useful and efficient in the 
calculation of higher approximations. In this method we 
get analytic structure of the solution just by generating 
universal coefficients. The series (3.5) gives solution for 
only up to S = 0.9. The forms of polynomial solutions 
(3.5) and nature of boundary conditions (3.4) suggest 
form of  nf   to be of the form 
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on substituting (4.1) into (3.3) and equating the coeffi-
cients of various powers of   on both sides we get re-
currence relation ,n kA  in the form 
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where , m = n – L and J varies from 2 2N   2, 1,0, , 2 3n   . 
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The relation (4.3) and (4.4) represents the shear stress 

and pressure gradient respectively. Domb-Sykes plot 
(Figures 2 and 3), after extrapolation Vandyke [7], con-
firms the radius of convergence of the series (4.3) and 
(4.4) to be   = 0.98 & 0.97 respectively. The region of 
validity of the above series increased by considering 
Pade’ sum which are given in Tables 1 and 2.  
 
Table 1. Comparison of results for  obtained by 

various methods for different S. 

  1f

 1f   

S Computer  
Extended Series 

Numerical Asymptotic 

0 −2.0 −2.0 −2.0 

6.145 −4.701898 −4.702 - 

22.7207 −7.887314 −7.891 −6.741 

46.0 −10.677908 −10.72 −9.59 

100.0 −14.791368 - - 

−0.11487 −1.879155 −1.87916 −1.87966 

−0.40737 −1.492549 −1.49255 −1.52379 

−0.73305 −0.673656 −0.67362 - 
 

Figure 2. Domb-sykes plot for the coefficients of 4.3. 
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Figure 3. Domb-sykes plot for the coefficients of 4.4. 
 
Table 2. Comparison of results for   1f  obtained by va- 

rious methods for different S. 

 1f   

S Computer  
Extended Series 

Numerical Asymptotic 

0.0 0.0 0.0 0.0 

6.145 −13.808172 −13.808 - 

22.7207 −48.556607 −48.658 −48.810 

46.0 −96.517978 −96.55 −96.80 

100.0 −206.110078 - - 

−0.11487 0.311493 0.31149 0.311 

−0.40737 1.175966 1.17596 1.14532 

−0.73305 2.527063 2.52706 - 

5. Conclusion 

A new type of series is presented for studying the prob-
lem of unsteady flow produced by squeezing of viscous 
fluid from a tube. Using recurrence relation (4.2) we 

generate universal coefficients (An,k, ; 1, 2,3, , 2k n 
1, 2,3, , 25n   ). These coefficients in turn give univer-

sal polynomial functions fn(η) . The se-
ries (4.3) gives 

 2, , 251,n 
 1f  and (4.4) represents  1f   have 

random sign pattern. Using Domb-Sykes plot (Figures 2 
and 3), we locate the position ad identifying the nature of 
the nearest singularity of the series restricting the con-
vergence. The series (4.3) and (4.4) are summed using 
Pade’ approximants Bender and Orszag [8]. Earlier series 
solution results were only for small value of S. But we 
are able to go upto S = 100 using Pade’ approximants. 
The results are in very close agreement with the numeri-
cal findings Skalak and Wang [6]. 
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Appendix 

Pade’ Approximants 

The basic idea of Pade’ summation is to replace a power 
series  

n
nC R  

by a sequence of rational functions of the form 
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where we choose 0  without loss of generality. We 
determine the remaining (M + N + 1) coefficients 0 1
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terms in the Taylor’s series expansion of  match 
with first (M + N + 1) terms of power series 
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The resulting rational function  is called a Pade’ 
approximant. If  is a power series representa-
tion of the function 

 N
MP R

n
nC R

 f R
   N

MP R f R
, then in favourable cases 

, pointwise as . There are 
many methods for the construction of Pade’ approxi-
mants. One of the efficient methods for constructing 
Pade’ approximants is recasting the series into continued 
fraction form. A continued fraction is an infinite se-
quence of fractions whose (N + 1)th member has the 
form 
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The coefficients Dn are determined by expanding the 
terminated continued fraction  NF R  in a Taylor series 
and comparing with those of the power series to be 
summed. An efficient procedure for calculating the coef-
ficients Dn’s of the continued fraction (A) may be de-
rived from the algebraic identities (8.4.2a)-(8.4.2c) (Ben- 
der and Orszag [7]). Contrary to representations by 
power series, continued fraction representation may con- 
verge in regions that contain isolated singularities of the 
function to be represented, and in many cases conver-
gence is accelerated. Based on these Dn’s we get termi-
nated continued fractions of various orders from the al-
gorithms (8.4.7), (8.4.8a) and (8.4.8b) (Bender and Or-
szag [7]). 

Pade’ approximants perform an analytic continuation 
of the series outside its radius of convergence. It is clear 
that it can approximate poles by zeros of denominator. 
With branch points it extracts single valued function by 
inserting branch cuts, which it simulates by lines of al-
ternating poles and zeros. 
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