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ABSTRACT

The flow of viscous incompressible fluid through a tube is considered. The similarity transformation is used to reduce
the governing equations into nonlinear ordinary differential equation. The solution procedure includes application of
long series analysis with polynomial coefficients. The series representing physical parameters ( f° "(1) , f ’"(1)) reveal

qualitative features which are comparable to pure numerical results. The analysis enables in extending region of validity.

A complete description of the solutions is presented.
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1. Introduction

Unsteady flows produced by a simple contraction or ex-
pansion of the wall have wide applications, for example,
in physiological pumps, peristaltic motion Jafrin [1] pro-
blems involving collapsible tubes etc. Bertram et al. [2].
The unsteady flow of a viscous fluid produced by con-
traction of the walls of a vessel with one end closed has
applications to:

1) Flow through a thin veins where the flow is con-
trolled by a valve system;

2) Flow in coronary arteries which are subjected to a
varying external pressure.

Secomb [3] extended the analysis of earlier authors for
the channel with pulsating walls.

The field of computational fluid dynamics demands
innovative new methods for the flow conditions. The
explosive growth of numerical algorithms and easy ac-
cess to bigger and faster computers are keeping in phase
with each other. The expressions of the theoretical physi-
cists and others are presenting new scenarios and novel
methods in harnessing the remarkable power of digital
computers. One method in this class is the semi-analyti-
cal semi numerical technique of computer extended se-
ries solution. Van Dyke [4] pioneered the use of long
series analysis in fluid dynamics. In an earlier study Bu-
jurke et al. [5] also successfully used this method.

In this paper, we investigate the problem of unsteady
flow in contracting or expanding pipe, studied by Skalak
and Wang [6] using long series methods. This problem
Figure 1 for some particular choice of a(¢), admits simi-
larity transformation leading to a nonlinear differential
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equation. The initial approximations enable us, in pro-
posing a series expansion with polynomial coefficients to
calculate enough terms (universal coefficients) by com-
puter. Using a Domb-Sykes plot we find the nature and
location of singularity restricting the convergence of the
singularity. Then the problem is also analysed using
Pade’ approximants and other useful techniques.

2. Mathematical Formulation

Let the inside tube be prescribed by a(f). The Navier-
Stokes equations then admit similarity solutions if

a(t):ao 1-pt (2.1)

where g, and [ are constants.

Let u and v be the velocities in cylindrical polar co-
ordinate system in the directions of z and r respectively.
Then the following transformations

2
7

77=—a§ (=7 (2.2)
_aoﬂf(n)
=— I (2.3)
’ 2 (0= i)
u= L7 2.4)
1- Bt
_ pap A7 2upz’ A
_4(1—ﬂt){f 2n  ap }+a§(l—ﬂt)2 +P(1)

2.5)

where 7 is normalized radius, p is the pressure, p
density, v Kinematic viscosity. The constant 4 and the
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Figure 1. The coordinate axes.

function P(r) are to be determined from the boundary
conditions.
The boundary conditions are on

da
=a(t),v="L u=0, 2.6
r a() v dt u ( )
r=0,v=0,3%_o .7)
de

Using above equations, the Navier-Stokes equations
take the form

ﬂf!///+2f”/_S(T7f/n+2ff!+ffﬂ_ffm):0 (28)

with the boundary conditions

ﬂgto(%j=0; or £(0)=0

Lt (Vnf")=0 2.9)

F(1)-0
f(1)=1

2
ﬁao

Here S is a squeeze number defined by S = v
v

3. Method of Solution

We seek the solution of (2.8) in power series of S in the
form

Sm)= 1)+ 251, (1) (3.1
n=l1
Substituting (3.1) into (2.8) and equating the like
Al1,(N2—(J+2)) = 2An,(N2—(J+1)) - An,(Nz—J)

1

powers of S on both sides, we get

77f6””+ 2f6’”: O (3.2)

and

n-1

nf 20 =0+ 28 [Z(; S = fnl,.f,f”j (3.3)

The relevant boundary conditions take the forms
£:(0)=0, Lt (Vnf7) =0, £,(1)=0, £,(1) =1
£(0)=0, Lt (Nnf7) =0, £(1)=0, £,(1) =0

The solutions of the above equations up to O(S 2) are

fo=2n-1’
5 7,2, 1,
=—=n+—-n'-=n+—
A g1t 3N g
1057 271 , 47 , 8 , 7 . 1
/> 27007 270" TsaT 27 T80 1350”7
(3.5)

4. Computer Extended Series

As the series (3.5) is slowly converging it is not reliable
to analyze the problem accurately with just few terms. It
is essential to get higher approximations. As one pro-
ceeds to higher approximations the algebra becomes
cumbersome and it is difficult to calculate the terms
manually. We propose a systematic series with polyno-
mial coefficients which is quite useful and efficient in the
calculation of higher approximations. In this method we
get analytic structure of the solution just by generating
universal coefficients. The series (3.5) gives solution for
only up to S = 0.9. The forms of polynomial solutions
(3.5) and nature of boundary conditions (3.4) suggest
form of f, (77) to be of the form

2
f(m)=24,, (1-n) 7' (4.1)
on substituting (4.1) into (3.3) and equating the coeffi-

cients of various powers of 7 on both sides we get re-
currence relation 4, , in the form

M=

+(N2—(J+2))(N2—(J+l))2(N2 —J){f 1

S35

L=1| r==2k=2L-J-r-3

A(n—l),(Nz—i—J) Pz (Nz _i_J) (4.2)

AL,kAm—l,(NZ—k—J—(r+2))1)7+r (k, Nz —k—J- (” + 2)):|:|}

where N, =2n,m=n- L andJ varies from —-2,-1,0,---,(2n-3).
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B (k)=—k(k—=1)(k-2)+4k(k-1)

Py (k)=2(k+1)k(k—=1)-8(k+1)k +2k (k—1)(k-2) -4k
P(k)=—(k+2)(k+1)k+4(k+2)(k+1)+4k(k+1)+4(k+1)—4(k+1)k(k-1)
Py (k)=2(k+2)(k+1)k=2(k+2)(k+1)-2(k+2)

By (ks k) ==k (k =1) (K =2)+ bk, (K =1)

P (kok) =2k (k, + 1)k —2(k + 1)k, (k =1)+2(k +1)k, (k 1)+ 2k, (k ~1)(k, - 2)

P (k,k)=k(k +2)(k +1)+4(k+1)(k + 1)k +(ky +1) k, (k-
—4(k +1)k, (k,—1)+2k, (k,—1)(k,-2)

R (kk)=-2(k+1)(k +2)(k +1)=2(k+2)(k +1)k +2(k +2)(k +1)k, +2(k +1)k, (K, —1)

1) —(k, +2)(k +1)k

B (k) ==2(k+2)(k +2)(k +1)—(k +2)(k +1)k

1
s A, =

ERET]
The expression for f"(1)

/(1 )——2+ZS”ZAM( (k-1)- 2(k+1)k+(k+2)(k+1)) (4.3)
n=1
The expression for " (1)
© 2n
IO =287 4, (k(k=1)(k=2)=2(k-+ 1)k (k—1)+ (k+2)(k-+1)k) (4.4)
n=1 k=1
The relation (4.3) and (4.4) represents the shear stress 25
and pressure gradient respectively. Domb-Sykes plot
(Figures 2 and 3), after extrapolation Vandyke [7], con-
firms the radius of convergence of the series (4.3) and
(4.4) to be ¢ = 0.98 & 0.97 respectively. The region of 2 §
validity of the above series increased by considering /
Pade’ sum which are given in Tables 1 and 2.
Table 1. Comparison of results for f”(l) obtained by
various methods for different S. =
(=}
/(1) <
s c S
Ex ter(:(rilz:rziu;eel;ies Numerical Asymptotic o ]
0 —2.0 -2.0 —2.0
6.145 —4.701898 —4.702
22.7207 —7.887314 —7.891 —6.741 05
46.0 —10.677908 —10.72 -9.59
100.0 —14.791368
—0.11487 —1.879155 —1.87916 —1.87966 0
~0.40737 —1.492549 149255 ~1.52379 0.00 0.10 0.20 0.30 0.40 Oi/SO 0.60 0.70 0.80 0.901.00
n
—0.73305 —0.673656 —0.67362

Figure 2. Domb-sykes plot for the coefficients of 4.3.
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Figure 3. Domb-sykes plot for the coefficients of 4.4.

Table 2. Comparison of results for f”(1) obtained by va-
rious methods for different S.

7(1)
s Computer . Numerical Asymptotic
Extended Series

0.0 0.0 0.0 0.0

6.145 —13.808172 —13.808 -
22.7207 —48.556607 —48.658 —48.810

46.0 —96.517978 —96.55 —96.80

100.0 —206.110078 - -
—0.11487 0.311493 0.31149 0.311
—0.40737 1.175966 1.17596 1.14532
—0.73305 2.527063 2.52706 -

5. Conclusion

A new type of series is presented for studying the prob-
lem of unsteady flow produced by squeezing of viscous
fluid from a tube. Using recurrence relation (4.2) we

Copyright © 2013 SciRes.

generate universal coefficients (4, k=1,2,3,---,2n;
n=1,2,3,---,25). These coefficients in turn give univer-
sal polynomial functions f,(7) (n = 1,2,'--,25). The se-
ries (4.3) gives /(1) and (4.4) represents " (1) have
random sign pattern. Using Domb-Sykes plot (Figures 2
and 3), we locate the position ad identifying the nature of
the nearest singularity of the series restricting the con-
vergence. The series (4.3) and (4.4) are summed using
Pade’ approximants Bender and Orszag [8]. Earlier series
solution results were only for small value of S. But we
are able to go upto S = 100 using Pade’ approximants.
The results are in very close agreement with the numeri-
cal findings Skalak and Wang [6].
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Appendix
Pade’ Approximants

The basic idea of Pade’ summation is to replace a power
series

>.C,R"

by a sequence of rational functions of the form

N

> 4R
Py (R)=i——
z Ban
n=0

where we choose B, =1 without loss of generality. We
determine the remaining (M + N + 1) coefficients 4, 4,
A+, Ay; By, B, B,, -+, B, so that the first (M + N + 1)
terms in the Taylor’s series expansion of P, (R) match
with first (M + N + 1) terms of power series » C,R" .
The resulting rational function Py (R) is called a Pade’
approximant. If ZCnR” is a power series representa-
tion of the function f (R), then in favourable cases
Py (R)— f(R), pointwise as N,M — o . There are
many methods for the construction of Pade’ approxi-
mants. One of the efficient methods for constructing
Pade’ approximants is recasting the series into continued
fraction form. A continued fraction is an infinite se-
quence of fractions whose (N + 1)th member has the
form

D
B(R)= 1%
i
1+ D,R
’ (A)
14D, , R
1+D,R
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The coefficients D, are determined by expanding the
terminated continued fraction F, (R) in a Taylor series
and comparing with those of the power series to be
summed. An efficient procedure for calculating the coef-
ficients D,’s of the continued fraction (A) may be de-
rived from the algebraic identities (8.4.2a)-(8.4.2¢) (Ben-
der and Orszag [7]). Contrary to representations by
power series, continued fraction representation may con-
verge in regions that contain isolated singularities of the
function to be represented, and in many cases conver-
gence is accelerated. Based on these D,’s we get termi-
nated continued fractions of various orders from the al-
gorithms (8.4.7), (8.4.8a) and (8.4.8b) (Bender and Or-
szag [7]).

Pade’ approximants perform an analytic continuation
of the series outside its radius of convergence. It is clear
that it can approximate poles by zeros of denominator.
With branch points it extracts single valued function by
inserting branch cuts, which it simulates by lines of al-
ternating poles and zeros.
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