
American Journal of Computational Mathematics, 2012, 2, 282-286 
http://dx.doi.org/10.4236/ajcm.2012.24038 Published Online December 2012 (http://www.SciRP.org/journal/ajcm) 

Copyright © 2012 SciRes.                                                                                AJCM 

Effective Solution of Riemann Problem for Fifth Order 
Improperly Elliptic Equation on a Rectangle 

Seyed Mohammadali Ali Raeisian 
Institute of Mathematics, Armenian National Academy of Sciences, Yerevan, Armenia 

Email: s_ma_raissian@yahoo.com 
 

Received August 12, 2012; revised October 17, 2012; accepted October 31, 2012 

ABSTRACT 

In this paper we present a numerical method for solving Riemann type problem for the fifth order improperly elliptic 
equation in complex plane. We reduce this problem to the boundary value problems for properly elliptic equations, and 
then solve those problems by the grid methods. 
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1. Introduction 

Let D be rectangle   , ,D x y a x b c y d      in a 
complex plane with boundary D   . 
In this paper, we consider the elliptic equation: 
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  (1.1) 

The number of roots of the characteristic equation cor- 
responding to Equation (1.1) in the upper half-plane and 
lower half plane are not equal therefore it is an improp- 
erly elliptic equation and general form of this kind of 
equations was investigated in [1] in the form of: *** 
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where   2 2
1 , 1D x y x y    is a unit disk in a com- 

plex plane with boundary 1D . As all classical boundary 
conditions for improperly elliptic equations are not cor- 
rect [1]; so we take following boundary conditions for 
problem (1.1): 
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where            
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satisfy Holder condition on  , 1f  with first order de- 
rivative satisfy Holder condition on   and 2f  satisfy 
Holder condition on  ) are given functions on  . We 
are seeking the solution of (1.1), (1.2) in the class of 
functions        5 2,C D C D   . The problem (1.1), 
(1.2) known as “Riemann Dirichlet type problem for fifth 
order improperly elliptic equation”. The general form of 
this kind of problem was considered in [1] and the solv-
ability of non-homogeneous problem and general solu-
tion of corresponding homogeneous problem was dis-
cussed there. The number of corresponding linearly in-
dependent solution of homogeneous problem in our case 
is one (see [1]) therefore the problem is not uniquely 
solvable and on the other hand we are dealing with com- 
plex domain which makes more complicated obstacles in 
realizing ideas. Although there was a few limited efforts 
in the especial cases like first order improperly and sec- 
ond order properly elliptic equations to present as effect- 
tive finite difference method in [2] but generally speak- 
ing; there is not too much practical suitable methods for 
higher order improperly elliptic equations. So, in this 
paper, our strategy based on converting boundary value 
problem for elliptic equation with complex coefficients 
into real coefficients cases; which could be solve by 
many fast finite difference methods ([3,4]). 

2. Description of the Algorithm 

The general solution of (1.1)
 
can be represented in the 

form: 

         2
0 1 2 3 4 ,u z z z z z z z z             

where  
0
, 1 4i i     are arbitrary analytic functions 
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in D . 
So, by using Taylor’s expansion, we may replace: 

       1 1 1 2 2 2, ,z C z z z C z z         

Then, we will get: 
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On the other hand from (1.1) we get: 
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If we denote U u  , we have a Dirichlet problem 
for the determination of U : 
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The solvability and smoothness of the solution of pro- 
blem (2.2) follows from the general theory of elliptic 
problems [5]. From the unique solution of Dirichlet 
problem for third harmonic Equation (2.2) we have U on 
all mesh points and a formula for representing unique 
solution of above Dirichlet problem may be found in [6, 
p. 149]. 

Applying bi-harmonic operator 2  on real part of u  
in (2.1); we will get: ***  
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Therefore 

  2
02 ,U z             (2.3) 

where 0  is analytic in D , so  z0 
 

is harmonic 
function. 

From (2.3) we have: 
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Denoting   1 0u z   and   1 0v z  , we 
have Poincare problems for the determination of these 
functions: 
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and 
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Solving these problems, we get: 0
1 1 1 2u u c y c    

and 0
1 1 3 4v v c x c    where 0

1u , 0
1v  are uniquely de- 

termined functions and  1, , 4jc j    are arbitrary 
real constants. 

We must mention that by Cauchy-Riemann equations 
we have: 1 3c c   ,therefore we get a representation: 

0
0 1 0iC c z      

Here 1C  is complex and 0c  is real arbitrary con- 
stants and 0 0 0

1 1iu v    is uniquely determined ana- 
lytic function.  

By integration we have: 

    2
0 0 0 1 2i ,z w z C z C z C        (2.7) 

where 0C  is real constant, 1 2,C C are arbitrary complex 
constants, and 0w

 
is uniquely determined function. 

Now, replacing 0  in (2.1), we get: 
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where 
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     3 1 1 2z C z z z       
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are arbitrary analytic functions. 
Finally, we represent the solution in the form: 

       22
0 0i , i , ,u z w z C zz H z z h z z      (2.9) 

where      1 2,H z z zz z z    and 

     3 4,h z z zz z z    . Here w0 is known func- 

tion, and ,H h  are real valued functions which satisfy 
the condition 2 2 0H h     and constant 0C  is arbi-
trary real constant. 

Now, we must determine real valued functions ,H h . 
These functions satisfy bi-harmonic equation:  

2 2 0H h     and from (2.9): 
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    2
0 , ,U z w z H x y    

Hence, we have following Dirichlet conditions on the 
boundary  : 
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Finally we get the “Dirichlet problem for bi-harmonic 
equation”: 
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 (2.10) 

which has a unique solution. 
Analogously, we get the same boundary problem: 
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i.e.: 
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0 0, ,h x y u z w z C zz      (2.11) 

for determination of function h. This problem includes 
arbitrary constant 0C , therefore must be modified. 

So, first we find the function 0h , by solving “Dirichlet 
problem for bi-harmonic equation”: 
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and then ,we solve: 

    
  

  

  

2
1

2
1 0

2
0 0

21
0

2
1 0

0,

,

,

h

h u z w z

f z w z

h
u z w z

N N N

f z w z
N

  







 

  

  

              

      

 (2.13) 

These problems are uniquely solvable, and the solution 
of (2.11) will be 1 0 0h h C h  . 

Replacing the function h into (2.9), we find: 

   
      

2
0

2

1 0 0 0

,

i , , i ,

u z w z H x y

h x y C h x y C zz

 

  
 

or: 
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So, during above argument we had proved that by us- 
ing our algorithm; we can find the solution of the prob- 
lems (1.1) and (1.2) with only one constant 0C , and line-
arly independent solution for corresponding homogene-
ous problem is 

  2

0 0i ,u zz h   

Here 0h  is bi-harmonic function and uniquely deter-
mined from problem (2.12). 

3. Numerical Solution 

Let us divide the rectangle D by N − 1 straight lines, par-
allel to coordinate axes and for simplicity the nodes are 
equidistant which denoted by:  
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Let’s consider Dirichlet problem for tri-harmonic 
Equation (2.2). The tri-harmonic equation is a sixth order 
elliptic partial differential equation: 
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which is encountered in viscous flow problems. 
In the general case, poly-harmonic equation kU f  , 

in the discrete setting, are usually solved by applying a 
Laplacian discretization repeatedly on a mesh, with the 
cotangent formula being the most popular and the one 
used in [7]. Although this formulation is efficient and 
particularly useful in interactive applications, it sup- 
ports only one particular way of specifying boundary 
conditions and the results often have significant mesh 
dependence. The convergent discretization based on a 
quadratic fitting scheme could be found in [8]. Anyway, 
Dang Q. A. [9] studied an iterative method for solving a 
BVP for a tri-harmonic type equation based on using 
boundary domain operator defined on pairs of boundary 
and domain functions in combination with parametric 
extrapolation technique and reduces the BVP for sixth 
order equation to a sequence of BVPs for Poisson equa- 
tion. 

Next, For finding numerical solution of Poincare prob-
lems (2.5) and (2.6); we solve it in domain with the 
boundary  , whereas 
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where the values of 2
h hU  are known on the boundary 
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points  . Because of simplicity and getting rid of com- 
plexity of the system , we may assume two points in (2.5) 
on the top left and down right corner of the bound-
ary are fixed, i.e.:    0 0, ,x y a h d h   and 

   1 1, , ,x y b h c h    

so: 

   1 0 0 10 1 1 1 11, 0, , 0,u x y u u x y u     

By denote the values of function 1u  in the mesh 
points approximately: 
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and from the grid boundary conditions:  
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we will find the values in the grid points on the sides of 
  parallel to OX axis. 
Finally, the values of  1

j

i
u  inside   and on the 

sides   parallel to OY axis will be found from the sys- 
tem of linear equation, main matrix of this system may 
be reduced to the tri-diagonal form : 
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the matrix T is diagonally dominant, therefore this linear 
system is uniquely solvable; so considered modified 
Poincare problem is uniquely solvable too and then from 
maximum principle [10], we have unique solvability of 

this system. 
Next, we consider the problem (2.10). A fast solver for 

compact discretizations of the bi-harmonic problem was 
presented in [11-13], also Dang Q. A. in [14,15] with the 
help of boundary or mixed boundary-domain operators 
introduced appropriately, constructed iterative methods 
for bi-harmonic and bi-harmonic type equations associ- 
ated with the Dirichlet, Neumann or simple type of 
mixed boundary conditions. 

By finite difference method, we find the values of the 
function H  in the mesh points approximately: 
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we use the discrete analogue of the Laplace operator: 
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and may discretisize biharmonic equation in (2.10) as 
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Here forward divided differences for the operator 
N




  

in (2.10) noted by h  ,and    0 1,
hh

f f  are values of 
functions  0 1,f f

 
 in the boundary points of mesh. 

The discretization obtained here and also in [16], tends 
to symmetric matrices so the convergence analysis is 
simpler, but there now exist standard fast numerical al- 
gorithms for this kind of boundary value problems too. In 
[17-19] for the two dimensional case, problem (2.10) has 
been reduced to second kind integral equations and a fast 
numerical algorithm is developed based on the con-
structed SKIE in [20]. 

The discrete problem (3.1) approximates the problem 
(2.10) (see [21]), therefore, from the stability of the 
problem (3.1), we have the convergence of the grid func- 

tion to   ,i jH x y  [3, p. 30, Theorem 2.5]. From the last  

two equation of the (3.1); we find the values of the func- 

tion hH  in the points    , , 0,1, ,i jx y i j N   and if  

the values j
iH  are on interior nodes, we find them from 

the linear system with symmetric pentadiagonal matrix, 
so from positive definiteness of this matrix, we may 
prove the stability of the (3.1) and an algorithm for the 
solution of the system can be found in [22]. 
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Therefore the problems (1.1) and (1.2) reduced to six 
uniquely solvable problems for properly elliptic equa- 
tions with real coefficients, which were solved by grid 
methods. 
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