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ABSTRACT 

Item response theory (IRT) is a modern test theory that has been used in various aspects of educational and psychologi- 
cal measurement. The fully Bayesian approach shows promise for estimating IRT models. Given that it is computation- 
ally expensive, the procedure is limited in practical applications. It is hence important to seek ways to reduce the execu- 
tion time. A suitable solution is the use of high performance computing. This study focuses on the fully Bayesian algo- 
rithm for a conventional IRT model so that it can be implemented on a high performance parallel machine. Empirical 
results suggest that this parallel version of the algorithm achieves a considerable speedup and thus reduces the execution 
time considerably. 
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1. Introduction 

Item response theory (IRT) provides measurement mod-
els that describe a probabilistic relationship between cor-
rect responses on a set of test items and a latent trait. 
With many advantages (see [1]), it has been found useful 
in a wide variety of applications in education and psy-
chology (e.g. [2-4]) as well as in other fields (e.g. [5-10]). 

Parameter estimation offers the basis for theoretical 
advantages of IRT and has been a major concern in the 
application of IRT models. While the inference of items 
and persons on the responses is modeled by distinct sets 
of parameters, simultaneous estimation of these parame-
ters in IRT models results in statistical complexities in 
the estimation task, which have made estimation proce-
dure a primary focus of psychometric research over dec-
ades [11-14]. Recently, because of the availability of 
high-computing technology, the attention is focused on 
fully Bayesian estimation procedures, which offer a 
number of advantages over the traditional method (see 
e.g. [15,16]). Albert [17] applied Gibbs sampling [18], 
one of the most efficient Markov Chain Monde Carlo 
(MCMC [19,20]) algorithms, to the two-parameter nor-
mal ogive (2PNO) [21] model. Since a large number of 
iterations are needed for the Markov chain to reach con-
vergence, the algorithm is computationally intensive and 
requires considerable amount of execution time, espe-
cially with large datasets (see [22]). Hence, achieving a 
speedup, and thus reducing the execution time, will make  

it more practical for researchers or practitioners to im-
plement IRT models using Gibbs sampling. 

High performance computing (HPC) employs super-
computers and computer clusters to tackle problems with 
complex computations. HPC utilizes the concept of par-
allel computing to run programs in parallel and achieve a 
smaller execution time or communication time, which is 
affected by the size of the messages being communicated 
between computers. With parallel computing, many large- 
scale applications and algorithms utilize Message Pass-
ing Interface (MPI) standard to achieve better perform-
ance. The MPI standard is an application programming 
interface (API) that abstracts the details of the underlying 
architecture and network. Some examples of applications 
that use MPI are crash simulations codes, weather simu-
lation, and computational fluid dynamic codes [23] to 
name a few. 

In view of the above, parallel computing can poten-
tially help reduce time for implementing MCMC with the 
2PNO IRT model, and as the size of data and/or chain 
increases, the benefit of using parallel computing would 
increase. However, parallel computing is known to excel 
at tasks that rely on the processing of discrete units of 
data that are not interdependent. Given the high data de-
pendencies in a single Markov chain for IRT models, 
such as the dependency of one state of the chain to the 
previous state, and the dependencies among the data 
within the same state, the implementation of parallel 
computing is not straightforward. The purpose of this 
study is hence to overcome the problem and develop a *Corresponding author. 
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high performance Gibbs sampling algorithm for the 
2PNO IRT model using parallel computing. This paper 
focuses on all-to-one and one-to all broadcast operations. 
The aim is to achieve a high speedup while keeping the 
cost down. The cost of solving a problem on a parallel 
system is defined as the product of parallel runtime and 
the number of processing elements used. 

The remainder of the paper is organized as follows. 
Section 2 reviews the 2PNO IRT model and the Gibbs 
sampling procedure developed by Albert [17]. Section 3 
illustrates the approach taken in this study to parallelize 
the serial algorithm. In Section 4, the performance of the 
developed parallel algorithm is investigated and further 
compared with that from serial implementation. Finally, 
a few summary remarks are given in Section 5. 

2. Model and the Gibbs Sampler 

The 2PNO IRT model provides a fundamental frame-
work in modeling the person-item interaction by assum-
ing one ability dimension. Suppose a test consists of k 
multiple-choice items, each measuring a single unified  

ability,  . Let 
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where j  and j  denote item parameters, i  denotes 
the continuous person trait parameter, and  denotes 
the unit normal cdf. 



The Gibbs sampler involves updating three sets of pa-
rameters in each iteration, namely, an augmented con-
tinuous variable ijZ  (which is positive if 1ijy   and 
negative if ij ), the person parameter i0y   , and the 
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where  , 1 x , assuming  2~ ,i N   , 0j   

and   1jp    (see [17,22]). 
Hence, with starting values  0  and  0 , observa-

tions       l, ,l lZ   can be simulated from the Gibbs 
sampler by iteratively drawing from their respective full 
conditional distributions specified in Equations (2), (3) 
and (4). To go from       1 1 1l l l  , ,Z

 
to       , ,l l lZ  , 

it takes three transition steps: 

1) Draw       1 1~ ,l lZ p Z    l ; 

2) Draw       1~ ,l lp Z   l ; 

3) Draw       ~ ,l lp Z   l . 

This iterative procedure produces a sequence of 
    ,l l  , l = 0, ··· , L. To reduce the effect of the start-

ing values, early iterations in the Markov chain are set as 
burn-ins to be discarded. Samples from the remaining 
iterations are then used to summarize the posterior den-
sity of item parameters   and ability parameters  . 
The algorithm takes less than 13 minutes for a 2000- 
by-10 dichotomous (0-1) data matrix and 10,000 total 
iterations when implemented in Fortran using the Mi-
crosoft Powerstation 4.0 compiler and the IMSL Fortran 
numerical library [22]. For a longer chain with 50,000 
iterations, it takes about 60-90 minutes for each execu-
tion. With every execution taking more than 12 minutes 
on a single computer, using this algorithm with large 
datasets is computational expensive. This further limits 
the use of IRT models under fully Bayesian framework 
in various applications. 

3. Methodology 

The study was performed using the Maxwell Linux clus-
ter, a cluster with 106 processing nodes. Maxwell uses 
the message passing model via the MPICH MPI frame-
work implementation. One of the 106 nodes acted as the 
root node, while the rest of the nodes acted as slave 
nodes. The root node was responsible for generating and 
partitioning the matrix y, transmitting the submatrices, 
updating and broadcasting θ, execution time recording, 
as well as the same duties as the slave nodes. 

Each node on the cluster has an Intel Xeon dual CPU 
quad-core processor clocked at 2.3 GHz, 8 GB of RAM, 
90 TB storage, and Linux 64bit operating system. 
MPICH allows the user to choose how many nodes to use 
before the execution of a program so that various number 
of processing nodes may be used in every execution. 

3.1. Parallelism with the Gibbs Sampler 

When decomposing a problem for parallel computation, 
the first decomposition method considered is the domain 
decomposition. In domain decomposition, the data asso-
ciated with the problem are decomposed and a set of 
computations is assigned to them [24]. Domain decom-
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position is a great fit for the 2PNO IRT algorithm since 
the input and intermediate data can easily be partitioned 
as illustrated in Figures 1 and 2. 

With this approach, the first processing node, P0, re-
ceives a sub matrix, 

0Py , of size n × g that corresponds 
to the elements of the y matrix from y0,0 to yn–1, g–1, where 
g k P  and P is the number of processing nodes. The 
second processing node, P1, receives a sub matrix of y, 

1P
y , of size n × g that corresponds to the elements of the 
y matrix from y0, g to yn–1, 2g–1 and so forth. Consequently, 
 

 

Figure 1. The input y matrix mapped for five processing 
units. 
 

 

Figure 2. The Z matrix, and α and γ vectors mapped for five 
processing units. 

each processing node updates the Gibbs samples as in the 
serial algorithm, but with a smaller input data set. That is, 
instead of operating on the whole input matrix y, they 
operate on a part of it of size n × g. 

Decompositions of Z, α, and γ are depicted in Figure 
2, where we see that each processor is updating a block 
of Z, α, and γ from Equations (2) and (4), respectively, 
where j = 1,···, g. For instance, P0 updates a block of Z, 

0PZ , from Z0,0 to Zn–1, g–1, a block of α, 
0P , from α0 to 

αg–1, and a block of γ, 
0P , from 0  to γg–1. 

Since θ is of size n × 1 (a column vector), it is not de-
composed. However, a problem arises with the update of 
θ. For simplicity, consider the update of the first element 
of θ, which requires the updated α, γ, and the first row of 
Z. Yet, any given processing node has only a part of α, γ, 
and the first row of Z. The solution is to assign one of the 
processing nodes (e.g., the root) to update θ and broad-
cast it to the rest of the units. The naïve approach to up-
date θ would be to have all the units send their part of α, 
γ and Z to the root so that it has the complete Z, α and γ 
to update θ from Equation (3) and then broadcast θ to the 
rest of the nodes. A problem with this approach is that 
the data communicated are too large, which causes the 
parallel algorithm to take a longer execution time than 
the serial algorithm. 

A better approach is one that minimizes the commu-
nication cost. This can be achieved by having every node  

 g
Z

1i ij jj jto calculate     
and 2

1

g

jj
 


  and 

send ψi and τ to the root for it to update  from 

2 2

1
~ ,

1 1
iP

i

P P

N
 


   

 
     


 

,     (5) 

This way, each processing node is sending a vector of 
size n + 1 to the root and one message of size n is broad-
casted by the root. The total data transferred between all 
the nodes by this approach is 

     1 2l n P l n P lP n 1      . 

As a comparison, the total data transferred between all 
the nodes by the naïve approach is  

       2 2l ng g P l n P lP g n n       , 

which equals lP(2n + 2) when g = 1, lP(3n + 4) when g = 
2, and so forth. When g > 1, the total data transferred 
using the naïve approach are considerably more than that 
of the proposed approach (n is usually in the order of 
thousands). 

3.2. Implementation 

The proposed algorithm was implemented in ANSI C 
and MPI with utilization of the GNU Scientific Library 
(GSL) [25]. To achieve the parallel computation as illus-
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trated in the previous section, the MPI_Gather and 
MPI_Bcast routines were used for collective communi-
cations. See the Appendix for part of the source code of 
the parallel algorithm in updating the model parameters. 

3.3. Performance Analyses 

In order to investigate the benefits of the proposed paral-
lel solution against its serial counterpart, four experi-
ments were carried out in which sample size (n), test 
length (k), and number of iterations (l) varied as below: 
 n =2000, k = 50, l = 10,000, 
 n =5000, k = 50, l = 10,000, 
 n =2000, k = 100, l = 10,000, 
 n =2000, k = 50, l = 20,000. 

In all these experiments, one (representing the serial 
algorithm) to nine processing nodes were used to imple-
ment the Gibbs sampler. Their performances were evalu-
ated using four metrics in addition to the execution time. 
These metrics are the total overhead, relative speedup, 
relative efficiency, and cost: 
 The total overhead can be calculated as 

0 P ST PT T  ,               (6) 

where P is the number of available processing nodes, TS 
is the fastest sequential algorithm execution time and TP 
is the parallel algorithm execution time. 
 Relative speedup is the factor by which execution 

time is reduced on P processors and it is defined as 

S PS T T .                  (7) 

 Efficiency describes how well the algorithm manages 
the computational resources. More specifically, it tells 
us how much time the processors spend executing 
important computations [24]. Relative efficiency is 
defined as 

SE T PT P .                 (8) 

 The definition of cost of solving a problem on a par-
allel system is the product of parallel runtime and P. 
Consequently, cost is a quantity that reveals the sum 
of individual processing node runtime. 

4. Results and Discussion 

Results from the four experiments are summarized in 
Figures 3-7. Note that the values plotted represent the 
average of ten runs. As expected, the execution time de-
creased as the number of processing nodes increased in 
all the experimented conditions (see Figure 3). 

In terms of efficiency and cost, the algorithm per-
formed better using two to five processing nodes (see 
Figures 4 and 5). When using up to seven nodes, the 
communication overhead (see Figure 6) is sufficiently 
low in order to not affect the overall speedup (see Figure 
7). The algorithm had the smallest execution time when 

 

Figure 3. Execution time of the algorithm using one through 
nine processors in all the experiments. 
 

 

Figure 4. Relative efficiency of using parallel algorithm over 
the serial algorithm in all the experiments. 
 

 

Figure 5. Cost of the algorithm using one through nine proc- 
essors in all the experiments. 
 
five or seven processing nodes were used (see Figure 3). 
When nine processing nodes were used, the communica-
tion overhead reached the highest, which caused a rela-
tively higher total execution time and lower speedup. 

It is noted that the overhead increased as the number 
of processing nodes increased and it reached the maxi-
mum with eight or nine processing nodes. This is be-
cause in the parallel algorithm, the overhead of commu-
nication is a result of nodes sending ψ and τ to the root 
and then the root broadcasting θ to the rest of the nodes  
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Figure 6. Total overhead of using parallel algorithm over 
the serial algorithm in all the experiments. 
 

 

Figure 7. Relative speedup of using parallel algorithm over 
the serial algorithm in all the experiments. 
 
in every iteration. Note that the total data transferred be-
tween all the nodes during execution is lP(2n + 1). The 
biggest part of idling occurs when the root waits to re-
ceive ψ and τ from all the slave nodes and when the slave 
nodes wait for the root node to calculate θ and broadcast 
it to them. The communication overhead increases more 
than the computation speedup when a certain amount of 
processors are used (ranges from four to seven proces-
sors in the experiments performed). As a result, the 
speedup does not increase with increasing processor 
count, and consequently, the cost increases dramatically. 

Furthermore, a close examination of Figure 7 indi-
cates that the experiments with input matrix sizes 2000 × 
50, 5000 × 50, and 2000 × 50 (with number of iterations l 
= 20,000), follow identical paths. The common input 
value of these experiments is the number of items, k. The 
plot for the experiment with input matrix size 2000 × 100 
shows that the algorithm maintains a higher speedup 
compared to the other experiments. Even though the ex-
periment with input matrix size 2000 × 50 has smaller 
input size, the experiment with input matrix 2000 × 100 
maintains a higher speedup over all the processors. The 
same pattern is observed from Figure 4. In particular, the 
plot for the experiment with input matrix size 2000 × 100 
shows that the algorithm maintains a higher efficiency 

compared to the other experiments where k = 50. These 
are because the size of the messages communicated in 
every iteration from the slave nodes to the root, and from 
the root to the slave nodes, depends only on n. As k in-
creases, the message size and communication overhead 
remain unaffected. Because of this, the processors spend 
more time performing computations and hence the effi-
ciency and speedup increase. 

5. Conclusions 

This study developed a high performance Gibbs sam-
pling algorithm for the 2PNO IRT model with the pur-
pose of achieving a lower execution time possible using 
the available hardware (Maxwell cluster). The algorithm 
was implemented using the ANSI C programming lan-
guage and the message passing interface. Experiments 
were performed to evaluate its performance with various 
dataset sizes or iteration lengths. Results indicated that 
the parallel algorithm (for the given problem size) per-
formed better, in terms of efficiency and cost, using two 
to five processing nodes. On the other hand, the algo-
rithm had the smallest execution time when nine proc-
essing nodes were used. 

The design of a parallel 2PNO IRT model has proved 
to be justifiable. Given the high data dependencies for 
such problems, the solution initially appeared to be 
non-trivial. By using domain decomposition, we man-
aged to avoid communication for the state dependencies. 
Nevertheless, communication in every iteration of the 
Markov chain cannot be avoided because of the data de-
pendencies within the state. By modifying the serial al-
gorithm, the size of the data communicated in every it-
eration was managed to be reduced to make a speedup 
possible. 

This study achieved parallelization through a column- 
wise decomposition and the use of all-to-one and one- 
to-all broadcast schemes. Further studies can be under-
taken to increase the speedup and the efficiency, and 
minimize the cost and the total overhead. For example, 
the data may be decomposed differently or an all-to-all 
broadcast scheme may be adopted in order to achieve 
smaller communication overhead. 
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Appendix 

The pseudo code for updating the values of Z, ψ, τ, θ, α, 
and γ is shown below. First of all, Z is updated through 
the function update_Z. Then, update_PSI_TAU is called 
to update ψ and τ and MPI_Gather is called to send ψ 
and τ to the root. The root receives ψ and τ and calls up-
date_TH to update θ and afterwards broadcasts θ by 
calling MPI_Bcast. Finally, α and γ are updated from a 
function call to update_A_G. In order to reduce commu-
nication overhead, ψ and τ are sent in the same message. 
To achieve that, an array of size n +1 is set up, where the 
first n entries consist of the elements of ψ and entry n +1 
consists of τ (the name of this array in the code is 
PSI_TAU_array). 
// Start iteration: 
for (m = 0; m < l; m++){ 

count++; 
update_Z(Z, y, TH, A, G, r); 
update_PSI_TAU(PSI_TAU_array, Z, A, G); 
MPI_Gather (PSI_TAU_array, n+1,  

MPI_DOUBLE, PSI_TAU_rec, n+1, MPI_DOUBLE,  
ROOT, MPI_COMM_WORLD);  

if (rank == ROOT){ 
double TAU_array[size]; 
int ind = 0; 
// Retrieve PSI and TAU from PSI_TAU_rec: 

for (j = 0; j < size; j++){ 
for (i = 0; i < n+1; i++){ 

if (i < n) 
gsl_matrix_set(PSI_matrix, i, j,  

PSI_TAU_rec[ind++]); 
else 

TAU_array[j] = PSI_TAU_rec[ind++]; 
} 

} 
update_TH (TH, THV, TAU_array, PSI_matrix, count, 
r); 
// Transfer TH data into a buffer so that it can be broad-
casted:  
for (i = 0; i < n; i++){ 

TH_array[i] = gsl_vector_get(TH, i); 
} 

} 
MPI_Bcast (TH_array, n, MPI_DOUBLE, ROOT, 

MPI_COMM_WORLD); 
// Transfer TH received to a vector structure: 
for (i = 0; i < n; i++){ 

gsl_vector_set (TH, i, TH_array[i]); 
} 
update_A_G(A, G, AV, GV, Z, TH, unif, count, r, p); 

} // end iteration 
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