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Abstract 

In this study, a reliable algorithm to develop approximate solutions for the problem of fluid flow over a 
stretching or shrinking sheet is proposed. It is depicted that the differential transform method (DTM) solu-
tions are only valid for small values of the independent variable. The DTM solutions diverge for some dif-
ferential equations that extremely have nonlinear behaviors or have boundary-conditions at infinity. For this 
reason the governing boundary-layer equations are solved by the Multi-step Differential Transform Method 
(MDTM). The main advantage of this method is that it can be applied directly to nonlinear differential equa-
tions without requiring linearization, discretization, or perturbation. It is a semi analytical-numerical tech-
nique that formulizes Taylor series in a very different manner. By applying the MDTM the interval of con-
vergence for the series solution is increased. The MDTM is treated as an algorithm in a sequence of intervals 
for finding accurate approximate solutions for systems of differential equations. It is predicted that the 
MDTM can be applied to a wide range of engineering applications. 

Keywords: Non-Newtonian Fluid, Stretching Surface, Shrinking Sheet, Multi-Step Differential Transform  
Method (MDTM) 

1. Introduction  

A number of industrially important fluids such as molten 
plastics, polymer solutions, pulps, foods and slurries, fos-
sil fuels, special soap solutions, blood, paints, certain oils 
and greases display a rheologically-complex non-New-
tonian fluid behavior. Non-Newtonian fluids exhibit a 
non-linear relationship between shear stress and shear 
rate. The Navier-Stokes equations governing the flow of 
these fluids are complicated due to their highly non-lin-
ear nature. The non-linearity nature of the equations 
comes from the constitutive equations which represents 
the material properties of rheological fluids. It is, there-
fore, not easy to find their exact solutions because the 
superposition principle for non-linear partial differential 
equations does not hold. Numerous models have been 
developed to simulate a wide variety of rheological flu-
ids, including viscoelastic differential models [1], couple 
stress fluid models [2] and micropolar fluid models [3]. 

Magnetohydrodynamic flows also arise in many applica-
tions including materials processing [4] and Magneto- 
Hydro-Dynamic (MHD) energy generators [5]. 

Boundary-layer flows of non-Newtonian fluids have 
been of great interest to researchers during the past three 
decades. These investigations were for non-Newtonian 
fluids of the differential type [6]. In the case of fluids of 
differential type, the equations of motion are of order 
higher than that of the Navier–Stokes equations, and thus, 
the adherence boundary condition is insufficient to de-
termine the solution completely [7-9]. The same is also 
true for the boundary-layer approximations of the equa-
tions of motion.  

In this paper, a reliable algorithm of the DTM, namely 
MDTM [10] is used to explain the behavior of the fluid 
such as stream function profile, velocity profile and 
variations of the velocity profile.  

The concept of the DTM was first introduced by Zhou 
[11] in 1986 and it was used to solve both linear and 
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non-linear initial-value problems in electric circuit ana- 
lysis. This method constructs, for differential equations, 
an analytical solution in the form of a polynomial. Not 
like the traditional high-order Taylor series method that 
requires symbolic computation, the DTM is an iterative 
procedure for obtaining Taylor series solutions [12,13]. 
Against these advantages, the DTM solutions diverge for 
some highly non-linear differential equations that have 
boundary conditions at infinity [14]. 

The paper has been organized as follows: In Section 2, 
the basic concepts of the differential transform method 
are presented. The basic concepts of the multi-step dif-
ferential transform method are presented in Section 3. In 
Section 4, the mathematical formulation is introduced. 
The analytical solution by the MDTM is presented in 
Section 5. Section 6 contains the results and their discus-
sion. Finally, the conclusions are summarized in Section 
7. 

2. Basic Concepts of the Differential  
Transform Method 

Transformation of the thk  derivative of a function in 
one variable is as follows [15] 
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which implies that the concept of the differential trans-
form method is resulting from Taylor series expansion, 
but the method does not calculate the derivatives repre-
sentatively. However, the relative derivatives are calcu-
lated by an iterative way which is described by the trans- 
formed equations of the original function. For imple-
mentation purposes, the function ( )f t  is expressed by a 
finite series and Equation (2) can be written as 
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where ( )F k  is the differential transform of ( )f t . 

3. Basic Concepts of the Multi-Step  
Differential Transform Method 

When the DTM is used for solving differential equations 

with the boundary condition ns at infinity or problems 
that have highly non-linear behavior, the obtained results 
were found to be incorrect (when the boundary-layer va- 
riable go to infinity, the obtained series solutions are di- 
vergent). Besides that, power series are not useful for 
large values of the independent variable. 

To overcome this shortcoming, the multi-step DTM 
that has been developed for the analytical solution of the 
differential equations is presented in this section. For this 
purpose, the following non-linear initial-value problem is 
considered, 

  ,  ,  , , 0pu t f f f  ,            (5) 

subject to the initial conditions ( ) (0)k
kf c , for  0,k   

1, , 1p  . 
Let [0, T ] be the interval over which we want to find 

the solution of the initial-value problem (5). In actual 
applications of the DTM, the approximate solution of the 
initial value problem (5) can be expressed by the follow-
ing finite series: 
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The multi-step approach introduces a new idea for 
constructing the approximate solution. Assume that the 
interval [0, T ] is divided into M  subintervals [ 1mt  , 

mt ], 1,2, ,m M   of equal step size /h T M  by 
using the nodes 

m

t mh . The main ideas of the 
multi-step DTM are as follows. First, we apply the DTM 
to Equation (5) over the interval [0, 1t ], we will obtain 
the following approximate solution, 
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using the initial conditions ( )
1 (0)k

kf c . For 2m   and 
at each subinterval [ 1mt  , mt ] we will use the initial con-
ditions ( ) ( )

1 1 1( ) ( )k k
m m m mf t f t    and apply the DTM to 

Equation (5) over the interval [ 1mt  , mt ], where 0t  in 
Equation (1) is replaced by 1mt  . The process is repeated 
and generates a sequence of approximate solutions 
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where N K M  . In fact, the multi-step DTM assumes 
the following solution: 
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The new algorithm, multi-step DTM, is simple for 
computational performance for all values of h . It is  
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Figure 1. Variation f η( )  with respect to K , when = 2M , 
1s = , = 1a , for the stretching sheet. 

 

Figure 2. Variation f η( )  with respect to K , when = 2M , 
1s = , = 1a , for the stretching sheet. 

easily observed that if the step size ,h T  then the 
multi-step DTM reduces to the classical DTM. As we 
will see in the next section, the main advantage of the 
new algo-rithm is that the obtained series solution con-
verges for wide time regions and can approximate 
non-chaotic or chaotic solutions. 

4. Mathematical Formulation 

Consider the flow of a second-order fluid following 
Equations (10-12) as 

 

Figure 3. Variation f η( )  with respect to K , when 

= 2M , 1s = , = 1a , for the stretching sheet. 

 
Figure 4. Variation f η( )  with respect to M , when 

= 1K , 1s = , = 1a , for the stretching sheet. 

2
1 1 2 2 1A A A ,T pI               (10) 

where 1A (gradv)+(gradv)T , and 

2 1 1 1A =dA /d +A (gradv) A ,Tt         (11) 

1 1 20, 0, 0.               (12) 

The flow past a flat sheet coinciding with the plane 
0y  , the flow being confined to 0y  . Two equal and 

opposite forces are applied along the x-axis so that the 
wall is stretched, keeping the origin fixed, and a uniform 
magnetic field 0B  is imposed along the y-axis. The 
steady two-dimensional boundary-layer equations for  
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Figure 5. Variation f η( )  with respect to M , when 

= 1K , 1s = , = 1a , for the stretching sheet. 

 

Figure 6. Variation f η( )  with respect to M , when 

= 1K , 1s = , = 1a , for the stretching sheet. 

this fluid in the primitive usual notation are  
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The precise mathematical problem considered is [16] 

 

Figure 7. Variation f η( )  with respect to s , when = 1K , 

= 0M , = 1a , for the stretching sheet. 

 

Figure 8. Variation f η( )  with respect to s , when = 1K , 

= 0M , = 1a , for the stretching sheet. 

2 2( ) [2 ( ) ]if ff Mf f K f f f ff              (15) 

The appropriate boundary conditions for the problem 
are  

(0) , (0) ,f s f a              (15) 

( ) 0, ( ) 0.f f               (16) 

5. Analytical Solution be the MDTM 

Applying the MDTM to Equation (15) gives the follow-
ing recursive relation in each sub-domain ( it , 1it  ), 0,i   
1,  ,  1n N  . 
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Figure 9. Variation f η( )  with respect to s , when = 1K , 

= 0M , = 1a , for the stretching sheet. 

Table 1. The operations for the one-dimensional DTM. 
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where ( )F k  is the differential transforms of ( )f  . 
We can consider the boundary conditions [Equations. 

(15) and (16)] as follows: 

(0)f s , (0)f a  ,            (18) 

(0)f   , (0)f   .           (19) 

The differential transform of the above initial condi-
tions are as follows 

(0)F s , (1)F a ,            (20) 

(2) / 2F  , (3) / 6F  .          (21) 

Moreover, substituting Equations (20) and (21) into 
Equation (17) and by using the recursive method, we can 
calculate other values of ( )F k . Hence, substituting all 

( )F k , into Equation (4), we obtain series solutions. By  

 

Figure 10. Variation f η( )  with respect to K , when 

= 2M , 1s = , = 1a , for the shrinking sheet.  

 

Figure 11. Variation f η( )  with respect to K , when 

= 2M , 1s = , = 1a , for the shrinking sheet.       
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Table 2. Comparison of obtained results for f (η) , when = 2M , 1s =  and = 1a  and various values of parameter K . 

( )f   

1.K   2K     

DTM Padé [5, 5] MDTM DTM Padé [5, 5] MDTM 
0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
0.5 0.716312 0.706233 0.706233 0.761281 0.747084 0.747084 
1.0 0.558208 0.498765 0.498765 0.643042 0.558134 0.558134 
1.5 0.507194 0.352244 0.352244 0.641502 0.416973 0.416973 
2.0 0.549619 0.248766 0.248766 0.754462 0.311513 0.311513 
2.5 0.671554 0.175687 0.175687 0.975226 0.232727 0.232727 
3.0 0.779422 0.124076 0.124076 1.16384 0.173866 0.173866 
3.5 0.467092 0.0876271 0.0876264 0.645226 0.129893 0.129893 
4.0 –1.51143 0.0618864 0.0618847 –2.73495 0.0970411 0.0970406 
4.5 –8.28107 0.0437091 0.043705 –14.5163 0.0724986 0.0724975 
5.0 –26.7055 0.0308744 0.0308659 –47.0937 0.0541641 0.0541617 
5.5 –70.4832 0.0218145 0.0217985 –125.568 0.0404682 0.0404633 
6.0 –165.017 0.0154227 0.0153948 –297.038 0.0302383 0.0302295 
6.5 –354.731 0.0109179 0.0108723 –644.682 0.022599 0.0225839 
7.0 –713.66 0.00774892 0.00767839 –1308.26 0.0168963 0.0168721 
7.5 –1360.3 0.00552703 0.00542273 –2513.06 0.0126421 0.0126049 
8.0 –2477.92 0.00397796 0.00382971 –4609.63 0.00947179 0.00941688 
8.5 –4341.63 0.0029083 0.00270467 –8127.06 0.00711334 0.0070352 
9.0 –7353.9 0.00218163 0.00191012 –13843.1 0.00536369 0.00525588 
9.5 –12090.3 0.00170165 0.00134899 –22874.4 0.00407131 0.00392658 
10 –19357.2 0.00140031 0.000952703 –36792.3 0.00312311 0.00293349 

Table 3. Comparison of obtained results for  f (η) , when = 2M , 1s =  and = 1a  and various values of parameter K . 

( )f   

1.K   2K     

DTM Padé [5, 5] MDTM DTM Padé [5, 5] MDTM 
0.0 0.695621 0.695621 0.695621 0.583156 0.583156 0.583156 
0.5 0.437262 0.49127 0.49127 0.359195 0.435667 0.435667 
1.0 0.202525 0.346951 0.346951 0.116804 0.325479 0.325479 
1.5 0.00605472 0.245028 0.245028 –0.109835 0.24316 0.24316 
2.0 –0.173392 0.173047 0.173047 –0.343373 0.181661 0.181661 
2.5 –0.290258 0.122211 0.122211 –0.505173 0.135716 0.135716 
3.0 –0.0223928 0.0863097 0.0863097 –0.0537612 0.101391 0.101391 
3.5 1.65387 0.0609548 0.0609548 2.78564 0.0757477 0.0757477 
4.0 7.24184 0.0430483 0.0430482 12.4698 0.0565899 0.0565899 
4.5 22.024 0.0304023 0.0304021 38.5972 0.0422774 0.0422774 
5.0 56.0808 0.0214713 0.0214709 99.7758 0.0315848 0.0315847 
5.5 127.258 0.0151642 0.0151635 229.359 0.0235966 0.0235964 
6.0 265.338 0.0107103 0.010709 483.575 0.0176288 0.0176285 
6.5 517.708 0.00756533 0.00756301 952.633 0.0131705 0.01317 
7.0 956.839 0.00534496 0.00534125 1775.47 0.00984004 0.00983907 
7.5 1689.93 0.00377781 0.00377216 3158.83 0.00735216 0.0073506 
8.0 2871.07 0.00267225 0.00266403 5401.49 0.00549389 0.00549152 
8.5 4716.41 0.00189295 0.00188142 8924.45 0.0041061 0.00410262 
9.0 7522.61 0.00134434 0.00132872 14308. 0.00306991 0.003065 
9.5 11689.3 0.000958921 0.000938387 22336.5 0.00229654 0.00228981 
10 17745.6 0.000689019 0.00066272 34052.4 0.00171964 0.00171068 

 
using the asymptotic boundary condition (2) / 2F   
and ( ) 0f    , we can obtain  ,  . For analytical 
solution of the considered problem, the convergence  
analysis was performed and in Equation (4), the i  value 
is selected equal to 10 and the interval was set equal to 
0.01. 

6. Results and Discussion 

Equation (15) with transformed boundary conditions was 

solved analytically using the DTM and the MDTM. In 
order to give a comprehensive approach of the problem, 
a comparison between DTM, MDTM and DTM-Padé 
solutions for various parameters is presented.  

In Figures 1-9, solutions for the stretching sheet are 
illustrated. Figures 1-3 show the variation of ( )f  , 

( )f  , ( )f   for various values of K . It is observed 
that increasing the parameter K . causes increases in 

( )f  , ( )f  , profiles, respectively. The influence of 
the magnetic parameter M , on ( )f  , ( )f  , ( )f    
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Figure 12. Variation f η( )  with respect to K , when 

= 2M , 1s = , = 1a , for the shrinking sheet. 

 

Figure 13. Variation f η( )  with respect to M , when 

= 1K , 5s = , = 1a , for the shrinking sheet. 

is presented in Figures 4-6. It can be concluded that, an 
increase in the magnetic parameter decreases ( )f  , 

( )f  , profiles. The effects of the parameter s  are 
shown in Figures 7-9. It is clear that an increase in this 
parameter causes a remarkable rise in ( )f   profile. 
Conversely, an increase in the value of ,s  causes a 
corresponding decrease in ( )f   profile.  

In Figures 10-18, solutions for the shrinking sheet are 
shown. Figures 10-12 show the variations of ( )f  , 

( )f  , ( )f   for various values of K . It is observed 
that increasing the parameter K . causes decreases in 

( )f  , ( )f  , profiles, respectively. The influence of  

 

Figure 14. Variation f η( )  with respect to M , when 

= 1K , 5s = , = 1a , for the shrinking sheet. 

 

Figure 15. Variation f η( )  with respect to M , when 

= 1K , 5s = , = 1a , for the shrinking sheet. 

the magnetic parameter M , on ( )f  , ( )f  , ( )f   
is presented in Figures 13-15. It can be concluded that, 
an increase in the magnetic parameter increases ( )f  , 

In Figures 10-18, solutions for the shrinking sheet are 
shown. Figures 10-12 show the variations of ( )f  , 

( )f  , ( )f   for various values of K . It is observed 
that increasing the parameter K . causes decreases in 

( )f  , ( )f  , profiles, respectively. The influence of 
the magnetic parameter M , on ( )f  , ( )f  , ( )f   
is presented in Figures 13-15. It can be concluded that, 
an increase in the magnetic parameter increases ( )f  , 

( )f  , ( )f   profiles. The effects of the parameter  
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Figure 16. Variation f η( )  with respect to s , when = 1K , 

= 2M , = 1a , for the shrinking sheet. 

 

Figure 17. Variation f η( )  with respect to s , when 

= 1K , = 2M , = 1a , for the shrinking sheet. 

,s  are shown in Figures 16-18. It is clear that increas-
ing this parameter causes a remarkable rise in ( )f   
profile. Conversely, increasing the value of s , 
causes a decrease in ( )f   profile. The Residual 
errors for Equation 15 are plotted in Figures 19-20 using 
the DTM and MDTM respectively. In order to verify the 
efficiency of the proposed method in comparison with 
the DTM and DTM-Padé solutions, we report the ob-
tained results in Tables 2 and 3 for ( )f   and ( )f   
when 2M  , 1s   and 1x   and various values of 
the parameter K . for ( )f   and ( )f  , respectively. 
It is obvious from Tables 2 and 3 that the MDTM is a  

 
Figure 18. Variation f η( )  with respect to s , when 

= 1K , = 2M , = 1a , for the shrinking sheet. 

 

Figure 19. Residual error for Equation (15) using the DTM 
approximations when = 1K , = 2M , 5s =  and = 1a . 

reliable algorithm method. 

7. Conclusions 

In this paper, the Multi-step differential transform me- 
thod was applied successfully to find the analytical solu-
tion of resulting ordinary differential equation for the 
problem of flow of a second-grade fluid over a stretching  
or shrinking sheet. The present method reduces the 
computational difficulties of the other methods (same as 
the HAM, VIM, ADM and HPM) [17-19], on the other 
hand, this method has some limitations (respect to HAM,  
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Figure 20. Residual error for Equation (15) using the 
MDTM approximations when = 1K , = 2M , 5s =  and 

= 1a . 

VIM, ADM and HPM). The method has been applied 
directly without requiring linearization, discretization, or 
perturbation. The accuracy of the method is excellent. 
The obtained results demonstrate the reliability of the 
algorithm and give it a wider applicability to non-linear 
differential equations. 
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Nomenclature 

0

B  uniform magnetic field along the y-axis 
M  magnetic parameter 

R  suction parameter 
  viscoelastic parameter 
  kinematic viscosity 

0

  electric conductivity 
 


