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Abstract 
Peter Debye and Erich Hückel had developed a theory for the ionic activity 
coefficients in dilute solutions of strong electrolytes some 95 years ago [1]. 
Their limiting law still stands and is confirmed as close to reality in many ex-
periments. In a previous article [2], it is shown that these limiting activity coef-
ficients arise because the electrical contribution in the electrochemical poten-
tial of ionic species is overestimated traditionally with a factor 2. The smaller 
value removes inconsistencies in the models and complies better with the ba-
sic electrostatic principles. In this article further evidence is given in support 
of this alternative description. As consequence the dilute activity coefficients 
become unity, e.g. are removed, which means that the electrochemical poten-
tial of ions in dilute solutions is expressed directly in concentration, instead 
of activity, which simplifies modelling in such dilute solutions. 
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1. Introduction 

The behavior of a strong electrolyte in the limit of high dilution is given by the 
formulae due to Debye and Hückel [1]. Modifications to the theories were dis-
cussed in 2009 [2]. This publication gives a discussion and additional informa-
tion in support of the theory. 

2. Thermodynamics 

For the energy of a phase we can write: 
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d d d di iU T S p V nµ= − +∑                     (1) 

And for the Gibbs free energy: 

d d d di iG S T V p nµ= − + +∑                     (2) 

The free energy is constant in a closed system (all dni ≡ 0) kept at constant 
temperature and pressure, e.g. at constant intensive variables (dT = 0, dp = 0). 

We integrate the energy at constant intensities of a phase and differentiate to 
retrieve the Gibbs-Duhem equations: 

0 d d di iS T V p n µ= − +∑                       (3) 

The thermodynamics require that for ionic equilibrium in electric fields the 
electrochemical potential (e.g. total free energy per mole of ion i). 

, , j i

i
i T p n

G
n

µ
≠

 ∂
=  ∂ 

                         (4) 

is constant for each constituent, over the regions that are accessible for these 
charged particles, where 

0 lni i i i i iRT c z Fµ µ γ φ= + +                      (5) 

Here iγ  is the activity coefficient, F the Faraday constant, ci the concentration 
of ion i, zi the charge of ion i, φi the total electric potential experienced by the ion 
i from the surrounding ions (ion cloud) and (if present) the externally applied 
electrical field, R the gas constant, and T the absolute temperature. Normally, for 
uncharged phases, we add the chemical components as neutral salts, but with a 
nonzero space charge that need not be the case. In chemical experiments we often 
assume that the space charge is still zero, and the charges accumulate on surfaces, 
with the counter charge nearby (polarized electrical double layers). If we express 
Equation (5) for one single ion: 0 0ln lni i i i i i i i i i ikT c z e kT c qµ µ γ φ µ γ φ= + + = + + . 
The electrical work per ion is expressed as a product of ion charge times po-
tential, where k is the Boltzmann constant and e the elementary positive 
charge. 

The electrochemical potential often is expressed as Equation (5), containing 
an idealized chemical term RTlnci and an electrical term ziFφi. How we do the 
accounting of electrical and chemical energy in the electrochemical potential ex-
actly is rather irrelevant, as it is only the total electrochemical potential that can 
be measured experimentally. Any deviation in the measurement from the de-
fined idealized two model terms is accounted for via the activity coefficient iγ : 

0 ln lni i i i i iRT c z F RTµ µ φ γ= + + +                 (6) 

The chemical term and the electrical term are idealized contributions based 
on hypothetical “idealized” model systems. Any deviation from that ideal beha-
vior for real systems goes into the last term on the right-hand side of Equation (6) 
containing the activity coefficient. If the idealized chemical and electrical term 
together describes reality well, then the activity coefficient iγ  is close to unity 
and the last term on the right-hand side of Equation (6) is only a small correction. 
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The chemical part is obviously based on the idealized system that obeys the 
Maxwell-Boltzmann distribution law. This equation has proven its merits in 
many chemical experiments involving mixtures of uncharged chemicals (e.g. ideal 
mixing behavior). 

The electrical part zieφI = qiφi per ion is obviously based on the notion that 
electrical work can be expressed as a differential electrical work contribution 
dWe = φdq for a test charge dq brought to a potential φ, or as dWe = qdφ where 
we let a charge q charge travel through a potential difference dφ. Since dWe = 
Fedx we may also write Fe = dφ/dx = E, where E is the electrical field strength in 
direction x, such that the electrical force is Fe = qE, which is equivalent to dWe = 
qdφ. 

The question is now simply: Are these idealized model contributions for the 
chemical and electrical contribution chosen the best ones, e.g. do they lead to ac-
tivity coefficients that are close to unity, so that the last term in the right-hand 
side of Equation (6) is only a small correction? 

The activity coefficients can be obtained experimentally by all kind of experi-
ments. Notably the potential measurements in concentration cells without transfer 
can be made very accurate in determining the free energy and hence in deter-
mining the value of the activity coefficients. Thus, we can check our model terms 
by independent experiments and verify how accurate our idealized models are. If 
the activity coefficients appear close to unity, our chosen two models for respec-
tively the chemical interaction and the electrical interaction are obeyed closely, 
or we are just lucky in the fact that the errors in the models compensate each 
other and cancel out. 

We can also pose the two model contributions and try to set up an extra mod-
el for the expected “idealized” deviations from the reality and calculate model 
predictions for the activity coefficients. This is essentially the route taken by 
Debye and Hückel. They model the deviations from the idealized terms as given 
by the Coulombic interaction energy calculated from the presence of the ion 
cloud of a smeared out rotationally symmetric opposing charge surrounding 
each ion in solution. Experiments indicate that their model predictions are ac-
curate in the low concentration range for aqueous mixtures of strong electrolytes, 
because in practice the measured activity coefficients follow the predicted trends 
at lower concentrations for the aqueous mixes of these strong electrolytes. 

3. Debye-Hückel Model 

The Debye-Hückel model represents ions as idealized point charges that have an 
electrical interaction as described by Coulombs law as captured in the Poisson 
equation. The ions distribute according to a Maxwell-Boltzmann distribution. 
This is the case both in the limiting law and in the extended equations. In the 
extended equations the point charges have a finite size. 

There are local concentration variations for the ions as consequence of their 
charge: There is a higher probability to find a charge of opposite sign (that is at-

https://doi.org/10.4236/ajac.2018.99032


P. van der Weg 
 

 

DOI: 10.4236/ajac.2018.99032 409 American Journal of Analytical Chemistry 
 

tracted) than of the same sign (that repel each other) near a particular charge. 
The interactions are calculated by assuming that the charge of counter ions av-
erage out to a smeared out rotationally-symmetric space charge or ion cloud that 
interacts with the central ion of exactly the opposite charge. Many of the inhe-
rent assumptions are touched upon in [3] [4] [5]. Ref. [4] also contains an in-
troduction to the mean spherical approximation (MSA) theory. 

According to the limiting law of Debye and Hückel: 
2

ln
8π

DH i
i

z eFRT κ
γ

ε
= −                           (7) 

or according to the extended equations of Debye-Hückel: 
2

ln
8π 1

DH i
i

z eFRT
a

κ
γ

ε κ
= −

+
                       (8) 

where e the elementary charge, ε the dielectric constant, a is the distance of clos-
est approach of the ions and κ reciprocal of classic Debye length with 

2
2 2F I

RT
κ ρ

ε
=                             (9) 

where I the ionic strength in molal units and ρ the density of the liquid. These 
model values for the activity coefficients have been shown many times to be ac-
curate in the lower concentration range, where long-range charge-charge inte-
ractions, e.g. Coulombs interactions, dominate. 

According to that same model we calculate the potential from the surround-
ing ion cloud within the limiting law as 

4π
DH i
i

z eκ
φ

ε
−

=                          (10) 

or within the extended law as 

( )
4π 1

DH i
i

z er a
a

κ
φ

ε κ
−

= =
+

                    (11) 

Hence, for both the limiting law and the extended law of Debye-Hückel theory, 
we may simply write: 

1ln
2

DH DH
i i iRT z Fγ φ=                      (12) 

Apparently: we may write something like: 

( ) ( )0 1ln ion cloud external
2i i i i i i iRT c z F z Fµ µ φ φ= + + +        (13) 

In case of neutral salt solutions, when the external field is zero, we may write. 

( )0 1ln ion cloud
2i i i i iRT c z Fµ µ φ= + +               (14) 

In that case we write for a completely dissociated 1-1 electrolyte at concentra-
tion c, without external potential, for the +ion: 

( )0 0 1ln ln ion cloud
2

RT c RT c z Fµ µ γ µ φ+ + + + + + + += + = + +      (15) 

https://doi.org/10.4236/ajac.2018.99032


P. van der Weg 
 

 

DOI: 10.4236/ajac.2018.99032 410 American Journal of Analytical Chemistry 
 

And for the −ion: 

( )0 0 1ln ln ion cloud
2

RT c RT c z Fµ µ γ µ φ− − − − − − − −= + = + +        (16) 

or for the total salt c c c+ −= = : 
0 0ln ln 2 lnsalt salt saltRT c RT c RT cµ µ µ µ γ γ µ γ+ − + + − − ±= + = + + = +      (17) 

where within the DH approximation the values for γ γ γ± + −= =  are equal and 
given by Equations (7)-(9). This equation has many times been proven a good 
approximation for the activity coefficients for aqueous electrolyte solutions in 
the lower concentration range. So, we can interpret the ion/cloud interaction in 
a neutral electrolyte as a chemical interaction Equation (17), e.g. expressed as ac-
tivity coefficients, or an electrical interaction from the micro potentials as given 
by Equations (15) and (16). 

Similar, but more complicated, equations result for the more general n-m elec-
trolytes and their mixes, which are also good approximations in the lower con-
centration range, as shown by the independent experimental verification. 

Now the dilemma is that Equation (13) shows that an ion in the classical 
theory responds differently to the potential from the ion cloud (micro potential) 
than to an external applied field (macro potential). It is strange that an ion can 
feel the difference between an externally applied electrical field and a local elec-
trical field from surrounding ions. The response to the ion cloud is reasonably 
quantified in many independent experiments to determine mean ionic activity 
coefficients for mixtures of salts at low concentrations. The response to external 
fields are more difficult to measure as the c+ and the c− concentrations will be-
come different and single ionic activity coefficients cannot be assessed in isola-
tion. 

The only suggestion I do in the article in JCIS is to assume that the factor ½ 
might be more general than only for the ion cloud in the DH theory. I show that 
if we redefine the electrochemical potential as 

0 1ln
2i i i i iRT c z Fµ µ φ= + +                   (18) 

and thus assume a different model for the electrical interaction, and repeat the 
procedure of DH, we arrive at almost the same equations, 0 ln DH

i i i iRT cµ µ γ= + , 
in the limiting law: 

2 1
2ln

8π

i
DH
i

z eF
RT

κ
γ

ε
= −                    (19) 

or according to the extended equations 

2
1
2ln

8π 11
2

DH i
i

z eFRT
a

κ
γ

ε
κ

= −
+

                (20) 

which can be equivalently, in both cases, again be written as: 
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0 1ln
2i i i i iRT c z Fµ µ φ= + +                  (21) 

This Equation (21) is a general equation where the potential φi is the total po-
tential (both macro potential from an external field plus micro potential from 
the surrounding ion cloud). In this case the theory is internally consistent, be-
cause the starting Equation (18) is identical to the resulting Equation (21). 

In case of an electrolyte without (external) macro potential we only have the 
micro potential from the surrounding ion cloud, and thus according to the ex-
tended DH model: 

( )
2

1
1 2micropotential ln
2 8π 11

2

DH i
i i i

z eFz F RT
a

κ
φ γ

ε
κ

= = −
+

 

Thus, when we interpret the micro potential as a “chemical” interaction: 

2
0

1
2ln

8π 11
2

i
i i i

z eFRT c
a

κ
µ µ

ε
κ

= + −
+

  

or for a 1-1 salt: 
0

2
0

ln ln

1
22 ln 2

8π 11
2

salt salt

i
salt

RT c RT c

z eFRT c
a

µ µ µ µ γ γ

κ
µ

ε
κ

+ − + + − −= + = + +

= + −
+

 

 

The advantage is that now the theory is internally consistent: the equation for 
the electrochemical potential of an ion that we start with is reproduced in the 
model calculation exactly. 

In the experimental showcase discussed in JCIS article, is shown that this equ-
ation even fits slightly better than the original DH, which indicates that the dif-
ferences in practice are small, but still in favor of the new theory. In fact, the eq-
uations are identical if we replace 1 2κ κ′ = , e.g. the new theory leads to a 
similar exponential decay of the potential of the ions of the ion cloud, only with 
a different reciprocal Debye length κ ′ . The counter ions are effectively a factor 

2  further out, since their electrical interaction energy is only half of that in 
the classical DH theory. So, all the DH trends remain valid (proportionality of 

ln iRT γ  with c , similar trends of 1-1, 1-2, 1-3, or 2-3 electrolytes, the impact 
of ionic strength etcetera), except for a slight change in the values of the activity 
coefficients from the extra factor 1 2 . 

As already stated, the terms chosen for the chemical and electrical contribu-
tion in the electrochemical potential are chosen arbitrarily and cannot be meas-
ured independently. Any misfit goes into the activity coefficients. But we have 
shown that a definition 
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0 1ln
2i i i i iRT c z Fµ µ φ= + +                   (22) 

or per ion 

0 1ln
2i i i i ikT c z eµ µ φ= + +  

will deliver activity coefficients that are close to unity in the low concentration 
Coulombic region where normally the DH activity coefficients apply. Therefore, 
the electrical interaction term used here is probably closer to reality, at least for 
the micro potential from the ion cloud. 

The rest of this note is going to show that in many cases the definition of elec-
trical work according to the last term in the last two equations is indeed appro-
priate. 

4. Electrical Energy 
4.1. Capacitor 

The most striking example is the energy of an electrical capacitance. According 
to elementary electrodynamics for a capacitance charged to total charge q: 

1
2

U qφ=                             (23) 

where φ the potential. For the capacitor the charge is proportional to the voltage, 
with proportionality factor the capacitance C, q = Cφ, or the energy for charging 
to q in infinitesimal steps dq or dφ: 

2

0 0 0

1 1d d d
2 2

q q q qU q q q q
C C

φ
φ φ φ= = = = =∫ ∫ ∫               (24) 

Here q is the charge and φ is the potential. So although for an infinitesimal step 
dU = φdq or qdφ, without the factor 1/2, the total energy has this factor 1/2. If 
we look at a tiny part dA of the total area A of the capacitance that represents a 
tiny fraction dq of the total charge q, we may write dU = 1/2φdq, which can be 
the case of a single elementary charge and its counter charge subjected to a po-
tential difference φ. 

4.2. Electro-Capillarity 

In the ideally-polarised electrical double layer we can make a diffuse space 
charge close to a metal surface (like Mercury or Silver) and create a double layer. 
In that case the system again behaves like a differential capacitor c, where for the 
free energy per unit area or interfacial tension: 

2d
z

z c
φ

γ γ φ− = −∫∫                        (25) 

e.g. the free energy has in first order a parabolic shape around the point of zero 
charge with 2 2c q φ γ φ= ∂ ∂ = −∂ ∂ , which shows that the charge is in first order 
proportional to the potential difference. This is in fact the only system where we 
can easily create a variable space charge and a variable macroscopic potential. 
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4.3. Linear Superposition Principle 

We may arrive at proportionality between charge and potential very generally 
via the linear superposition principle of electrostatics, which states that we may 
generate the response of a system by simply imposing the responses of the indi-
vidual parts: We can calculate the total potential by summing the voltage con-
tributions of all individual charges. So, if we double a charge in a general system 
of charges, the potential of that charge at any spot of the system will double its 
value, which is a generalization of q = Cφ for the capacitor. So, for any single 
charge or system of charges, we may write for the potential q = αφ, or for the 
energy, when we let all charges grow from zero: 

2

0 0

1 1d d
2 2

q q q qU q q qφ φ
α α

= = = =∫ ∫  

This is a very general equation based on the peculiarities of the Coulomb law 
that allows us to obey and apply the linear superposition principle. 

It is obvious that for the electrical energy we may state the electrical contribu-
tion as the differential term φdq or as the more integrated contribution 1/2qφ. In 
the first definition φdq you assume that you use an infinitely small test charge to 
probe the potential, such that the test charge does not change the potential. In 
the last definition 1/2qφ you allow both the potential and the charge to be finite 
and neither of them infinitesimally small, and simply calculate the total energy 
exactly, even if it involves only one ion extra brought in contact with a system of 
charges. In the electrochemical potential both the charge and the potential are 
not infinitesimally small, and hence that last definition is therefore more appro-
priate and closer to reality for any real system, even for a single ion and its 
counter charge in the surrounding ion cloud. 

If we now return to Equation (13) we see that we apparently may apply for the 
very small local field of order of one elementary test charge and a voltage of a 
few mV (as in the ion cloud in not too high concentrations, say up to 0.1 M) we 
must apply the integrated equation 1/2qφ for the electrical energy to be accurate, 
but for the external potential, for which both charge and potential can be large, 
involving large numbers of ions, in order of Avogadro’s number, and large po-
tentials (Volts), we still resort to the differential form, φdq, which we somehow 
miraculously integrate to φq, e.g. zFφ, as if we can assemble the charges by sum-
ming many small test charges without affecting the field. Is that not weird? I 
would expect that if the small local system of the ion cloud and a large system 
like a capacitor all give 1/2qφ, we should also expect such a response in the elec-
trochemical potential, e.g. 1/2ziFφ, which is in fact just a similar system. 

4.4. Assembly of Charges 

Let us assemble a collection of point charges into a dielectric, or into a finite free 
space, from originally infinitely apart, e.g. initially without any energy of mutual 
interaction [6]. For bringing a first charge in a (zero) field from infinity we spend 
no electrical work: 
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1 0W =                              (26) 

For bringing in a second charge we spend: 

( ) ( )2 2 1 2 1 2 1W q r q rφ φ= =                       (27) 

where φ1(r2) potential of ion 1 at the position of ion 2 and φ2(r1) potential of ion 
2 at the position of ion 1. Per ion we have spent for two charges 1/2qφ. 

For bringing in the third charge: 

( ) ( )3 3 1 3 2 3W q r rφ φ = +                        (28) 

For the three charges we have spent in total  
( ) ( ) ( )2 3 2 1 2 3 1 3 2 3W W W q r q r rφ φ φ = + = + +  , or again 1/2qφ per charge. 

For the transport of the n-th charge 

( ) ( ) ( )1 2 1n n n n n nW q r r rφ φ φ − = + + +                  (29) 

The total electrical free energy is given by the sum of all Wi: 

( )
1

2 2 1

N N i

i i k i
i i k

W W q rφ
−

= = =

= =∑ ∑ ∑                       (30) 

We can now replace the potentials by their explicit expressions: 

( )
4π

k
k i

i k

qr
r r

φ
ε

=
−

                         (31) 

then such energy can be expressed as 
1

2 1

1
4π 2 4π

N i N N
i k k

i
i k i k ii k i k

q q qW q
r r r rε ε

−

= = ≠

= =
− −∑∑ ∑ ∑                 (32) 

or 

( )1
2

N

i i
i

W q rφ= ∑                           (33) 

where φ(ri) the total potential at the position of charge i of all surrounding charges. 
In summing over all particles would count every interaction twice, hence the 
factor 1/2 in front of the second summation in Equation (32), which is the same 
as saying that the pair interaction energy must be equally divided over each of 
the two ions involved. 

So, if we want to calculate the electrical energy of a particular ion in a sea of 
positive and negative ions, we may simply hypothetically freeze the system and 
calculate the potential φ at the spot of the ion from all the other ions. The elec-
trical energy per ion is 

( )

averaged

1 1
2 2

N

i i
i

q r
WW q
N N

φ
φ ∆ = = =  

 

∑
             (34) 

Here we see that for any general assembly of charges, we may calculate the total 
electrical energy as a contribution of order 1/2qφ for the ion charge introduced 
in the field of the other ions. Here it is immaterial whether the charges are ideal 
point charges or have a finite volume, or are dipoles, if they are separated in 
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space, such that they do not occupy the same volume element. The contributions 
of ions and (water) dipoles simply add together. Often, we treat the water as a 
continuous dielectric with a dielectric constant, which is probably most of the 
time a good approximation. The presence of the dielectric modifies the field, and 
thus the value of the potential at the spot of each ion. 

In an electrolyte the positive and negative charges almost cancel each other in 
the effective electrical potential, except for the ion cloud of opposite sign around 
the ion, in double layers, and in the case that an effective nonzero space charge is 
present from unbalance in positive and negative charges. 

Here we must realize that Equation (33) is exact for the electrical work needed 
to assemble any physical system of “point” charges, irrespective of the size of the 
individual charges and irrespective of the size of the ultimate resulting potentials, 
and independent of the path used to create that assembly: We can build up the 
field by assembling the charges from infinite distances apart, or let all charges 
grow from zero to their value while they are present at the right spot, or any 
other assembly process that is done at constant pressure and temperature. We 
only must require that the ions cannot occupy the same spot at the same time 
due to their finite size, as potentials would than explode to infinity. But that is a 
physically realistic assumption, even for electrons in a metal (in the classical 
electrostatic limit). 

If ½qφ is the perfect answer for the electrical Coulombic work needed to in-
troduce one ion into a sea of other ions with effectively the opposite charge of 
the ion introduced, fully in line with the linear superposition principle of elec-
trodynamics, why is that then not taken as the most perfect measure of the elec-
trical energy term in the electrochemical potential, which is apparently tradi-
tionally taken qφ, thus twice that value? 

4.5. Cyclotron 

In the cyclotron the energy gain per revolution is approximately q∆φ for each 
cycle of a charge q, where ∆φ the imposed electrical potential difference in the 
cyclotron. In this formula q∆φ the electrical field is assumed so strong that a sin-
gle or a few particles with charges q in the beam do not matter, e.g. do not mod-
ify the strength of the imposed electrical field.  

But if you look closely, the particles in the beam must interfere with the elec-
trical field: They will modify the electrical field slightly by their presence via 
their reaction (imaging) forces. The total field therefore will depend on the 
presence of these particles. Only when there is no particle at all, q∆φ, with ∆φ the 
undisturbed electrical potential difference, is exactly right. 

I am convinced that when particles are moving in the magnetic & electrical 
fields in the cyclotron, the fields are slightly, but significantly, modified. If two 
particles approach each other, the front one will accelerate and the rear one will 
lose speed. Moreover, the particles will interact with the magnets and charges 
that will adjust, although these forces will be small. Many charged particles build 
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up the field and therefore the few charges in the beam give only a slight interfe-
rence of the effective field. 

I am sure that when you try to find an exact solution, you would have to  

comply with ( )1
2

N

i i
i

W q rφ= ∑  exactly at any instant, where φ is the field at the  

position of particle i of all the charged particles that are building the field. 
In this case q∆φ for a single particle is a simplifying mathematical approxima-

tion assuming that the charge of the particle is assumed infinitesimally small and 
does not change the potential difference ∆φ. 

The same argument is traditionally used in the reaction field of a single ion: 
but that cannot be the case: The ion charge and the electrical reaction field of the 
surrounding ions are in their mutual effect of the same order of magnitude, and 
are fully building each other. Hence, we need to take the full energy equation in-
cluding the factor 1/2. 

4.6. Modelling the Electrical Interaction Term 

The discussion above clearly shows that if we define according to Equation (5) 
the electrical part of the electrochemical potential per ion as 

( )electrical i i
i i i

A

z F q
N

φ
µ φ

+
∆ = =                   (35) 

that we are overestimating the electrical contribution with a factor 2 for every 
possible assembly of charges, while a contribution per ion: 

( )
1

12electrical
2

i i

i i i
A

z F
q

N

φ
µ φ

+
∆ = =                   (36) 

is right on spot for any possible configuration of any number of interacting ionic 
charges at any spatial configuration, notably including the case where we add 
one simple ion to a solution of very many ions, whose effective charge was just 
the opposite of the last ion added. 

So, in the JCIS article I am not disputing the differential electrical work term 
dW = φdq as appears in many fundamental equations for the work associated 
with introducing an infinitesimal test charge in an existing electrical field φ, but I 
show that the applicability of DH theory has indirectly proven us that the elec-
trical work in the diffuse ion cloud of even a single ion can be more accurately be 
expressed as the more integrated formula W = 1/2qφ. 

And then I suggested that if such a model is appropriate for the small field of 
the ion cloud: 

( )0 1ln ion cloud
2i i i i iRT c z Fµ µ φ= + + ,             (37) 

we might generalize that to all electrical interactions for strong electrolytes: 

0 1ln
2i i i i i iRT c z Fµ µ γ φ= + +                   (38) 
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Here the electrical energy is not the differential form dU = φdq, but chosen the 
integrated form U = 1/2φq, which is expected from elementary electrodynamics 
to be exact for any general assembly of charges. I show in the JCIS article that 
this equation even fits slightly better, e.g. results in activity coefficients that are 
closer to unity in the particular case that is often referred to as a classical exam-
ple that shows the success of the standard DH theory. 

I want to stress here again that any model chosen for the chemical and the 
electrical term in the electrochemical potential can only show its merits by the 
value of the activity coefficients in the range where the model is applicable. 

For the calculation of the electrical contribution in the electrochemical poten-
tial we need a thermodynamic average of the electrical interaction energy per ion, 
averaged over a large assemble of ions, and the question remains whether this is 
described by the differential form φdq or, as I suggest better, by the generalized 
average 1/2qφ as given by Equation (34) that, according to classical electrody-
namics is appropriate for the long-range Coulombic interaction of any assembly 
of charged particles of any size or of any distribution and fully in line with the 
Superposition Principle of Electrostatics. 

Now that we have a better, and more generally applicable, model for the free 
energy associated with the Coulombic electrical ionic interactions of strong elec-
trolytes, inherently fully in line with the Superposition Principle of Electrostatics, 
correct for any microscopic and/or any macroscopic configuration or assembly 
of charges, dipoles, etcetera, it would be foolish not to use that improved model 
in the expression of the electrochemical potential of ions. 

4.7. Electrical Work in an Electrochemical Cell 

I want to show next that the normal equations for potential differences of elec-
trochemical cells remain valid, irrespective of the adapted equations of the elec-
trochemical potential.  

Let us reconsider the concentration cell 

( ) ( ) ( ) ( )2 2Cu Ag,AgCl HCl m  H Pt H Pt HCl m AgCl,Ag Cu−’ ’    (39) 

without transport with potential difference 

right leftemf φ φ φ= − = ∆                          (40) 

With net reaction of 1 mole for 1 Faraday of charge (n = 1): 

( ) ( )HCl m HCl m′ →                         (41) 

If an infinitely small electric charge dq is passed through the voltage drop emf 
in the external circuit, the system produces a quantity dWext of work: 

d dextW emf q=                            (42) 

(This equation is the integrated form of the familiar electrical formula: power = 
voltage × current). 

If the cell operates reversibly at a given temperature and pressure, the external 
work is accompanied by a decrease dG in the free energy of the entire cell: 
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d dextW G= −                           (43) 

The free energy change is due to a reduction of dm moles of one reactant in 
the cathode and a simultaneous oxidation of dm moles of the other reactant in 
the anode. For one mole of reactants converted to products, the free energy 
change is ∆G, so for dm moles reacted: 

d dG G m= ∆                           (44) 

Combining the preceding three equations gives: 

d dG m emf q∆ = −                        (45) 

Let n be the number of electrons transferred for each atom reduced in the ca-
thode and oxidized in the anode (for our reaction n = 1). The charge transferred 
for dm moles of overall reaction is: 

d dAVq eN n m=                        (46) 

where 191.6 10e −≅ ×  Coulombs is the electronic charge, 236 10AvN ≅ ×  is Avo-
gadro’s number and the product eNAv is the charge of one mole of electrons. This 
product is called Faraday’s constant, 96500F ≅  Coulombs/mole. Combining the 
above two equations yields the desired final result: 

( )AVG n eN emf nF emf∆ = − = − ⋅                 (47) 

Here we have shown that for a reversible process, the electrode energy is ∆W = 
∆φ∆q and not ∆W = 1/2∆φ∆q, because all the charge is travelling reversibly 
through the same potential difference ∆φ, that is assumed not to change during 
the charge transport: A good battery will keep its voltage nearly constant while a 
current is delivered. 

A cell with a positive potential difference (right-left) indicates that the reac-
tion inside is written qua direction as a spontaneous process (∆G < 0) towards 
further equilibrium: When the leads are connected through a high resistance the 
spontaneous reaction will create a small spontaneous current in the external 
circuit, e.g. the system acts as a charged battery. 

We conclude that the new detailed equation for the electrochemical potential 
does not interfere with the equations derived for electrochemical cells. 

4.8. Semi-Permeable Membrane 

Let us now consider a classical example of the consequences of my modifications 
in the case of a semi-permeable membrane that only is permeable for the cation i 
of a 1-1 salt and not permeable for the anion j and not permeable for the solvent 
(water), in contact with two reservoirs, A (left) and B (right), of volume V con-
taining the 1-1 salt at equal or different concentrations. This is a simple system. 

Thermodynamic equilibrium requires constancy of the electrochemical po-
tential of the cation: 

( ) ( )i iA Bµ µ=                        (48) 

Classically we would write 
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( ) ( )0, 0,ln lni i i A i i i BRT a A z F RT a B z Fµ φ µ φ+ + = + +         (49) 

Or 

( )
( ) ( )ln i

i B A i
i

a A
RT z F z Femf

a B
φ φ= − =                (50) 

This is as far as we get. Now we can make certain approximations to get some 
further, e.g. replace activities by concentrations and assume that the concentra-
tions are close to the bulk concentrations of the salt, hence: 

( )
( )

ln
i

c ART emf
z F c B

≅                         (51) 

This is essentially the classical approach. 
But now let us look at this system more closely and bring some more physics 

in. If the concentrations in both cells are the same, the potentials are equal, and 
the space charge is zero. There might be some preferential adsorption of one of 
the ions, and therefore a polarized double layer on both sides, but the total 
charge on both sides will be zero. According to the superposition principle we 
may superimpose the adsorption and the membrane potential phenomena, 
hence we may forget for simplicity the polarized double-layer effect. In the solu-
tion the ions feel the micro potential of the surrounding ion cloud. We can also 
separate that effect via the superposition principle. Hence, we focus only on the 
macro potential from the presence of the membrane. 

The electrical work for passage of charge through the membrane associated 
with the leakage of cations from the high to low concentration side is 

electricald d iW qφ=                          (52) 

Here φ is the potential difference between the two sides of the membrane. Now 
we know that the charge build up is proportional to the voltage difference (as 
associated with increasing the concentration difference). In fact, here we recog-
nize the behavior of an electrical capacitance again, dq = Cdφ, which the mem-
brane is, e.g. a charge separation in space, obeying the electrical linear superpo-
sition principle. 

At equilibrium the chemical work should be equal to the electrical work, as 
the electrochemical potential is constant over the whole system: 

d ln di iRT a qφ= −                         (53) 

Hence, we may simply integrate the differential work to give: 

( )
( )

21 1ln d
2 2

i
i

i

a A
RT C C q

a B
φ φ φ φ= − = − = −∫              (54) 

Here we again recognize the Boltzmann law 

( )
( )

1
2exp

i
i

i

qa A
a B RT

φ − 
=  

  
 

                     (55) 
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(The minus sign should be in accord with the chosen signs of potential dif-
ference and the sign of the charge). Here again the differential form in Equation 
(52) leads, because of the linear superposition principle, to an equilibrium Equa-
tion (54) that should contain a factor 1/2 in the integrated form. This I have not 
recognized in the membrane theories up till now, but would be required for a 
sound modelling of elementary membrane phenomena. 

You might argue here that the capacitance might not be constant, e.g. it is a 
differential capacitance. But even then, the behavior is in first order quadratic in 
potential difference, and the higher order corrections set in at higher charges 
and potentials away from zero charge, very similar to the effects of the higher 
order corrections in the DH theory that are accounted for in the activity coeffi-
cients. 

5. Extrapolation to Standard States at Infinite Dilution 

In many experiments involving strong electrolytes we need to extrapolate the 
data to infinite dilution to get thermodynamic data for the electrolytes in the 
hypothetical infinite dilution reference state at unit activity (standard electrode 
potentials φo, reaction free energies ∆Go, enthalpies, etcetera). In these extrapola-
tions we traditionally employ the Debye-Hückel activity coefficients to extrapo-
late over the lower concentrations towards infinite dilution, as we had expected 
them to be essentially correct. Now I have shown that these traditional activity 
coefficients might be slightly in error. This might indicate that we must adapt 
the extrapolation procedure to incorporate the improved expressions for the ac-
tivity coefficients, which might lead to slight, and even maybe sometimes even 
significant, changes in the extrapolated and published thermodynamic reference 
data for strong electrolytes and their electrode potentials. This is a fundamental 
result that might constitute a lot of work. 

6. Summary 

To summarize, we may state in general, fully in compliance with the definition 
of electrical work, that for two points of identical composition (two identical 
electrodes) per mole 

d di iz Fµ φ=                            (56) 

or per ion: 

d d di i iz e qµ φ φ= =                         (57) 

Normally the electrical work is defined as dW = φdq, where we bring an infi-
nitesimal charge over a potential difference φ. In the last equation we have made 
the potential difference infinitesimally small. The equation is formally only cor-
rect for an infinitesimally small charge. 

When we integrate this equation, e.g. create a measurable potential difference 
φ and a finite charge qi, even for a single ion, the superposition principle requires 
that the potential and charge are proportional for any system that we create by 

https://doi.org/10.4236/ajac.2018.99032


P. van der Weg 
 

 

DOI: 10.4236/ajac.2018.99032 421 American Journal of Analytical Chemistry 
 

assembling a system of charges. It is immaterial whether the field creates the 
charges, or the charges create the field: They are building at the same time. This 
is the reason why for any significant (ionic) charge and any significant field φ: 

1
2i iqµ φ∆ = ∆                            (58) 

This new formula with the factor ½ allows us to obey the linear superposition 
principle of elementary electrodynamics that states that for any assembly of 
charges in any configuration in space, the potential and charges are proportional. 
The consequences for the definition of the electrochemical potential are in prac-
tice small and absorbed in different values for the activity coefficients. But in this 
new way, obeying the superposition principle, we probably capture the elemen-
tary electrodynamics and physics better and thus make better and simpler mod-
els: 

The fact that the activity coefficients are essentially closer to unity in the dilute 
Coulombic range, allows us to assume that the activity coefficients are equal to 
unity in that Coulombic range and hence replace in models the activity by sim-
ple concentration. This simplifies the models tremendously in further calcula-
tions as we may then state: 

0 1ln
2i i i i iRT c z Fµ µ φ= + +                    (59) 

where φi the total potential, containing (superimposed) contributions from mi-
cro and macro potentials and without activity coefficients, hence we have a sim-
ple fundamental equation linking concentration and total potential, that should 
accurately predict the behavior of electrolytes in an electrical field at low con-
centration in the range where Coulombic interactions dominate. This makes 
modelling work much easier. 

Traditionally, we were caught in an iterative cycle: we need to express equa-
tions in activities that we do not know a priory. Hence in models and in numer-
ical simulations/calculations we approximate the activities first by concentra-
tions (thus forget about activity coefficients, e.g. approximate them by unity), eva-
luate the (now approximate) model expressed in concentrations and then calcu-
late the local concentrations according to the model. We then calculate the (ap-
proximate) activity coefficients by some (DH) model to get a better (second) ap-
proximation for the local activities, and repeat the calculation with calculated ac-
tivities, etcetera. 

But in our new equation, the activity coefficients remain unity (are absent) in 
the lower concentration range where the Coulomb forces are dominant. The mod-
els are thus expressed directly in concentration, and need to be evaluated only 
once, with the same accuracy. This makes life easier, especially when the model 
requires the combination of external and local fields (like in the Gouy-Chapman 
theory for the ideally polarized electrode with an ideally polarized electrical double 
layer present [7], creating a field and a local difference in the local concentra-
tions of anions and cations). 
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7. Discussion 

As you see I offer an alternative formulation for the detailed modelling in the 
electrochemical potential of strong dilute electrolytes, which has some advan-
tages, and is based on, to my opinion, sound physical principles. 

You can either use the classic expression, which needs activity and activity 
coefficients even in the dilute range to correct for the less efficient modelling of 
the electrical interaction, separating the effect of the ion cloud out from the elec-
trical interactions and bring them into the chemical energy, or alternatively use 
the new expression and define the chemical and electrical energies more effi-
ciently, fully in line with the superposition principle and classical electrodynam-
ics. In that last case the ion cloud is simply a part of the electrical field interac-
tion as it should be, without the need to separate “macroscopic” and “micro-
scopic” potentials, with different models. Such separate models are later difficult 
to unify in more elaborate systems like the electrical double layer, when both ion 
clouds and an effective space charge are present. 

I have always found it difficult to unify the superposition principle of classical 
electrostatics, the classical energy equations in the electrostatic field, like those 
for capacitors, and the traditional definition of the electrical energy term in the 
electrochemical potential of ions. I hope that my alternative approach will help 
to resolve these issues and may give a better description, and a better basis for 
further modelling of electrochemical phenomena involving dilute strong elec-
trolytes and electrical fields. 
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