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Abstract 
The regeneration of pore water (PW) nutrients was investigated and the contribution of benthic 
nutrient fluxes to the overlying bottom water (BW) was examined. Dissolved inorganic nutrients 
( 2NO− , 3NO− , 3

4PO −  and 4
4SiO − ) were measured in PW and BW in El Mex Bay and surround drains 

during spring 2010. Nutrient concentrations gradiance in PW with overlying seawater were eva-
luated according to Fick’s Law. Average inorganic nutrient fluxes were estimated using the pore 
water gradient concentration across the sediment-water interface. Calculated nutrient fluxes had 
averages of −7.24, −1.36, −7.86 and −1.33 in El Mex Bay. Additionally, the fluxes in the drains were 
−34.39, −32.28, −53.20 and −117.6 mg⋅m−2⋅day−1 for 3NO− , 2NO− , 3

4PO −  and 4
4SiO − , respectively. 

Mineralogical studies of sediment samples by using IR, X-ray analysis were carried out to identify 
the chemical structure of sediments. The results revealed that calcite, aragonite and quartz are the 
dominant minerals. On the other hand, differential thermal analysis (DTA) was used to evaluate 
and discuss different kinetic parameters such as Ea#, ∆G#, ∆H#, ∆S#, Z and Tm support the view of 
the extra stability of these sediments. 
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1. Introduction 
During the last century, the Egyptian coastal areas along the Mediterranean sea were strongly impacted by the 
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development of anthropogenic activities on their shores and the subsequent inputs of inorganic including nu-
trients and organic pollutants [1]-[7]. Although these releases were significantly reduced during recent decades 
because of regulations, contaminants accumulated in the sediments over time [8]-[19]. These sediments now 
constitute a potential source of contaminants for the water column that could alter the water quality and threaten 
aquatic organisms [20]-[30]. Understanding the processes controlling the dynamics of contaminants in the sedi-
ment, improving our knowledge of the environmental risk induced by contaminated sediments and appropriately 
orientating the action of politics and managers, is thus a challenge for the next decades [31]. 

Nutrient fluxes at the sediment-water interface can indeed influence or regulate the nutrient composition of 
the water column since the sediment can behave as a sink or as a source of inorganic nitrogen, phosphorus and 
silicate through different biogeochemical processes [32]. Processes involved in nutrient transfer are reversible, 
quick and differ with season and sediment types. Since many pollutants originally introduced into the water 
column have affinities for sediment particles, the pore water is expected to be more polluted than bottom water 
[1]. Nutrient salts had been introduced to El Mex Bay mainly through the surrounded drains [33]. 

Sediments may originate from a number of sources. The proportions of sediments from different sources at 
any particular location will depend on a variety of hydrological and geological factors, e.g. circulation patterns, 
tidal movement, weathering conditions and source rocks. It was pointed out that the two extreme sources of se-
diments i.e. landward and seaward, together with intermediate sources, such as river mouths slope impose severe 
limitations on the geochemical interpretation of sedimentary processes [34]. The most important sedimentary 
and chemical interactions may be subdivided into two aspects; 1) the modification of sedimentary detritus dur-
ing its transport to the seas; and 2) the modification of sediments after deposition (digenetic changes). IR, X ray 
and DTA are used to study sediment compositions. 

2. Materials and Methods 
2.1. Study Area 
El-Mex Bay is part of the Alexandria coast on the Mediterranean Sea. It is adjacent to the center of Alexandria 
that is populated with about six million inhabitants and is considered as one of the main fishing sources in Egypt. 
It extends for about 15 km between El-agamy head land in the west and the western harbor to the east and from 
the coast to a depth line of about 15 km. the bay has a mean depth of about 10 m and surface area of about 19.4 
km2 (Figure 1). It is a highly polluted area, the major types of pollution sources are domestic sewage, industrial 
waste water, and agricultural run-off, through lake out lets, and river discharged and oil pollution. El-Mex Bay 
receives mixed agricultural run-off from lake Mariut through El-max pumping station and El-umum drain, in-
dustrial water from chloro-alkali plant, tanneries and slaughterhouse, also, air borne particles from the fumes of 
adjacent industrial plants including a cement factory [35]-[42]. 
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Figure 1. El-Mex Bay and surround drains showing sampling stations. 
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2.2. Sampling 
2.2.1. Bottom Water 
Bottom water samples were collected using a five liters Nisken’s plastic bottle provided with a thermometer. 

2.2.2. Grab Surface Sediments 
Surficial sediments were collected in April 2010 from seven stations, distributed at El-Mex Bay of Alexandria, 
and four stations in the drains (El-Umum, El-Noubaria, El-Qalah and Mariout Lake) as shown in Figure 1 using 
Ekman grab sampler. 

2.3. Methods 
2.3.1. Bottom Water 
Nutrient salts were spectrophotometrically determined using a double beam spectrophotometer (UV VIS- 
SPEKOL® 1300/1500 single beam), according to the methods described by Strickland and Parsons [43]. 

2.3.2. Interstitial Waters 
a) Extractions of Interstitial Waters from Sediments 
The choice of the techniques used for extraction the interstitial water from sediments is usually governed by 

the nature of sediments and available facilities as follows; 1—In case of silty sediment fractions, the squeezer 
technique was used [44]. The squeezer was lined with Teflon as recommended by Patterson and Settle [45]; 
centrifugation for muddy sediments occurred at 10.000 rpm for about 20 minutes [46]; and 2—by filtration on a 
glass fiber filter, in case of sand sediment fractions. 

b) Nutrient Salts Analysis 
2NO− , 3NO− , 3

4PO −  and 4
4SiO −  were measured in small volumes of the interstitial waters (5 - 10 ml). Nu-

trient salts were spectrophotometrically determined using a double beam spectrophotometer (UV VIS-SPEKOL® 
1300/1500 single beam) according to Strickland and Parsons [43]. 

2.3.3. Sediments 
a) Preparation of Samples 
After extraction of the interstitial waters, sediment samples were subjected to air dryng, by spreading them on 

clean plastic sheets. All these were made inside a clean cabinet. The quartering was made using the familiar 
cone and quarter technique. Air dried samples were placed inside an electric oven for overnight at 70˚C. One 
half of each dry sediment sample was lightly hand ground in an a agate mortar, sieved through a screen of 0.2 
mm mesh size and kept in clean and well stopper polyethylene vials to be ready for geochemical analysis. The 
remainder of each dry sample was used for the mechanical or grain size analysis. 

b) Grain-size and Granulemetric Analysis 
The sediment samples were subjected to grain size analysis according to the method described by Folk [47]. The 

phi unit is equivalent to the −log 2x.where x is the grain size in millimeter. 25 g of the dry sediment samples were 
taken for mechanical analysis, which was carried out using a standard set of sieves in a Ro-Top shaker for 20 min, 
the sieves were arranged from top to bottom in a one phi order as follows: −2, −1, 0, 1, 2, 3 and 4 phi, which corres-
pon 4, 2, 1, 0.5, 0.25, 0.125 an 0.063 mm respectively. The collected sieve fractions were accurately weighted. The 
samples containing an appreciable amount of mud (more than 10%) were subjected to pipette analysis as described 
by Krumbein and Pettijhon [48]. Each fraction of sucking pipette was dried and weighted to the nearest 0.0001 g. 

c) Infrared Spectra (IR) Analysis 
Sediment samples were analyzed by Infrared Perkin-Elmer R79521, Ratio Recording FT-IR System Spectro-

photometer (USA) that was available from central lab unit, National Institute of Oceanography and Fisheries 
(NIOF), Alexandria, Egypt. 

d) X-ray analysis  
The data were obtained using (Pentater Link Oxford, Link ISIS) and JEOL JSM-5300 Scanning electron Mi-

croscope. Specttra taken in the range of 1 - 8 Kev. The instrument is available in faculty of science Alexandria 
University. 

e) Thermal analysis 
Differential thermal analysis (DTA) was carried using a Shimadzu DTA-50 with platinum cell that was 
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available from the fine analysis center, Cairo University, Egypt. The rate of heating was 10˚C/min. Dry nitrogen 
was followed over the sample at a rate of 20 ml/min. 

2.4. Fluxes Calculations 
Due to the ever-increasing loads of nitrogen and phosphorus from aquaculture, lots of dissolved or granular ni-
trogen and phosphorus accumulate on the surface of the sediments by flocculation, adsorption and sedimentation, 
resulting in growing contents of nitrogen and phosphorus in the overlying waters. This indicates that in El Mex 
Bay, a large amount of nitrogen and phosphorus from the sediments is released into the overlying water [33] 
[37]-[39]. It is obviously clear that there are concentration gradients of nitrogen and phosphorus in pore water 
along the sediment depth. The diffusion fluxes of nitrate, nitrite and dissolved reactive phosphate (DRP) and si-
licate across sediment-water interface can be computed by Fick’s first law. Fluxes of ammonia, nitrite, nitrate, 
phosphate and silicate between sediments and the overlying water were calculated according to Fick’s first law 
of diffusion as follows: 

d
ds
cJ D
x

φ  = − × × 
 

 

where J is the flux (μmol·m−2·d−1), φ  is the mean porosity of surface sediment (mlpore water/cm3
sediment; dimen-

sionless) = 0.7 for El Mex Bay (unpublished data), Ds is the diffusion coefficient (m2·d−1), and dc/dz is the con-
centration gradient in the overlying bottom waters (μmol·m−4). 

0sD D Fφ=  [49] 

where D0 is the diffusive coefficient at infinite dilution, and the values for NO2-N, NO3-N, PO4-P, SiO4-Si were 
18.3, 17.2, 9.25, 7.07 × 10−6 (cm2/sec) at 21˚C [50] and F is the sediments resistivity [51]. 

Krom and Berne [49], gives an empirical relationship between F and φ  according to: 

1
mF

φ
=  

For 0.7φ ≤ , m = 2 is a better fit to the data. These data imply that m is not constant over the entire range of 
porosities possible in a particular sediment type undergoing natural compaction. 

The diffusion flux (Ji) for phosohorus is estimated by Fick’s law according to: 

( )2 d di oi iJ D c xφ= −  

Therefore: ( ) ( )26 29.25 10 0.7 d d cm seci iJ c x−= − × × ×  

( )1 9 4d cm 10 31 at.wt.of P g cm
d

c M
x L

µ − − = = × 
 

 

where [ ] [ ]d P Bi i ic = −  

( ) ( ) ( ) ( )26 2 9 4
2

2 2 1

NO -N 18.3 10 0.7 d 5 cm sec 10 14 g N cm

2.17 10 d mg N m day

i

i

J c

c

− − −

− − −

 = − × × × × 
= − × ⋅

 

( ) ( ) ( ) ( )26 2 9 4
3

2 2 1

NO -N 17.2 10 0.7 d 5 cm sec 10 14 g N cm

2.04 10 d mg N m day

i

i

J c

c

− − −

− − −

 = − × × × × 
= − × ⋅

 

( ) ( ) ( ) ( )26 2 9 4
4

14 2 1 2 2 1

PO -P 9.25 10 0.7 d 5 cm sec 10 31 g P cm

2.43 10 d g P cm sec 1.875 10 d mg P m day

i

i i

J c

c c

− − −

− − − − − −

 = − × × × × 
= − × × ⋅ = − × × ⋅

 

( ) ( ) ( ) ( )26 2 9 4
4

2 2 1

SiO -Si 7.07 10 0.7 d 5 cm sec 10 28 g Si cm

1.68 10 d mg Si m day

i

i

J c

c

− − −

− − −

 = − × × × × 
= − × ⋅

 



M. A. Shreadah et al. 
 

 
517 

Sakamaki et al., [52] reported that the sediment water exchange fluxes of 3NO−  are controlled by both ben-
thic microalgal uptake and the release from sediments that is largely affected by the overlying water quality. The 
authors added that at high concentration in low tide the benthic microalgal actively absorbs dissolved inorganic 
nitrogen, especially 3NO−  that is much higher than 4NH+  and high transfer of 3NO−  from water to sediments 
occurs. In this case, the activity of algae is also considerably affected by the high concentration of 3NO−  and the 
uptake fluxes largely change during the day time. However, at low concentration in high tide, a high release 
from sediments to water occurs and predominates in the sediment-water fluxes. 

3. Results and Discussion 
3.1. Nutrient Exchange between Pore and Overlying Water 
Measurements of dissolved inorganic nutrients ( 2NO− , 3NO− , 3

4PO −  and 4
4SiO − ) in PW and BW were per-

formed in El Mex Bay and surround drains during Spring 2010, and illustrated in Table 1. The nutrient salts 
concentrations in drains are much higher than El Mex Bay stations because of agriculture and domestic wastes. 

When nutrients from outer sources are discharged into water bodies, a great deal of nitrogen and phosphorus 
accumulates in sediments and their concentrations may be up to 50 to 500 times that in the overlying water [53]. 
The results showed significantly higher nutrient concentrations in the PW than their corresponding BW as 
shown in Table 1. The average concentrations in PW were about 44.8, 37.6, 113.45 and 15.76 times higher than 
the average values reported in the BW for 3NO− , 2NO− , 3

4PO −  and 4
4SiO −  respectively in El Mex Bay. The 

large increase in nutrient loading has led to the impairment of many water bodies globally [54]. This included 
the eutrophication of water bodies that can lead to dissolved-oxygen depletion, species shifts, and fish kills [55]. 
Nutrient concentrations in the PWin the present study had higher average values than reported by Nessim et al., 
[56] in Eastern Harbour (2.8. 14.2 and 25 for 2NO− , 3

4PO −  and 4
4SiO −  µML−1, respectively). 

Nutrient diffusive fluxes calculated in the present study were illustrated in Table 2 that had averages of −7.24, 
−1.36, −7.86 and −1.33 in the upword diriction, however, in the drains were −34.39, −32.28, −53.20 and −117.6 
mg·m−2·day−1 for 3NO− , 2NO− , 3

4PO −  and 4
4SiO − , respectively. Abu El Khair et al., [57] reported difussive 

fluxes of −0.053, −0.445 and −1.77 mg·m−2·day−1 for 3NO− , 3
4PO −  and 4

4SiO − , respectively in Abu Qir Bay. 
Additionaly, Farragala [58] reported nutrients diffusive fluxes of −0.01, +0.007 and −0.143 mg·m−2·day−1 for  
 
Table 1. Nutrient concentrations in BW and PW (µML−1) of El-Max bay and surrounded drains during spring 2010. 

St.No. Nitrite Nitrate Phosphate Silicate 

 BW PW BW PW BW PW BW PW 

1 ND 24.51 1.80 4.57 6.44 911.40 4.26 51.96 

2 0.38 49.03 1.43 292.85 2.66 75.95 5.33 31.17 

3 6.15 28.02 8.25 317.79 8.54 455.70 13.06 83.13 

4 0.83 178.60 9.83 53.45 0.77 260.40 3.92 114.31 

5 0.38 52.53 3.34 44.04 5.88 282.10 3.96 62.35 

6 0.38 17.51 31.17 1175.50 1.12 32.55 3.92 31.17 

7 0.50 98.06 12.05 663.50 0.70 943.95 3.11 218.22 

Average 1.43 64.04 9.70 364.53 3.73 423.15 5.37 84.62 

8 12.33 487.83 20.00 591.96 9.66 2598.58 77.59 4809.25 

9 0.63 4024.85 5.00 2202.88 53.90 1703.45 49.84 2107.42 

10 1.38 479.07 2.86 2453.98 1.68 971.08 6.18 1405.99 

11 ND 978.11 40.00 1562.72 10.22 6151.95 111.00 19929.08 

Average 4.78 1492.47 16.96 1702.89 18.87 2856.26 61.15 7062.94 

8—El-Umum Drain, 9—El-Qalaa Drain 10—El-Noubaria Drain and 11—Mariut Lake. 
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Table 2. Fluxes of nitrite, nitrate, phosphate and silicate (mg·m−2·day−1) from sediments in El-Mex bay and surround drains 
during spring 2010. 

St.No. 
Nitrite Nitrate Phosphate Silicate 

D0 = 18.3 × 10−6 D0 = 17.2 × 10−6 D0 = 9.25 × 10−6 D0 = 7.07 × 10−6 

 dc J dc J dc J dc J 

1 24.51 −0.53 2.77 −0.06 904.96 −16.97 47.7 −0.80 

2 48.65 −1.06 291.42 −5.94 73.29 −1.37 25.84 −0.43 

3 21.87 −0.47 309.54 −6.31 447.16 −8.38 70.07 −1.18 

4 177.77 −3.86 43.62 −0.89 259.63 −4.87 110.39 −1.85 

5 52.15 −1.13 40.7 −0.83 276.22 −5.18 58.39 −0.98 

6 17.13 −0.37 1144.33 −23.34 31.43 −0.59 27.25 −0.46 

7 97.56 −2.12 651.45 −13.29 943.25 −17.69 215.11 −3.61 

Average 62.61 −1.36 354.83 −7.24 419.42 −7.86 79.25 −1.33 

8 475.5 −10.32 571.96 −11.67 2588.92 −48.54 4731.66 −79.49 

9 4024.22 −87.33 2197.88 −44.84 1649.55 −30.93 2057.58 −34.57 

10 477.69 −10.37 2451.12 −50.00 969.4 −18.18 1399.81 −23.52 

11 978.11 −21.22 1522.72 −31.06 6141.73 −115.16 19818.1 −332.94 

Average 1487.69 −32.28 1685.93 −34.39 2837.39 −53.20 7001.79 −117.63 

8—El-Umum Drain, 9—El-Qalaa Drain 10—El-Noubaria Drain and 11—Marriut Lake. D0; is the diffusive coefficient at infinite dilution at 21˚C 
cited from Zhang et al. [50]. 
 

2NO− , 3NO−  and 3
4PO − , respectively. Comparing the results of the present study with that reported by Abu 

Khair et al., [57] and Faragalla [58] revealed that nutrient upword diffusive fluxes in El Mex Bay had significant 
higher values that recorded in Abu Qir Bay and Eastern Harbour. 

2NO−  and 3NO−  diffused from pore water with high values refered to that immobilization rate (Nitrification) 
of these ions is greater than consumption rate (denitrification). This reflects the dominant of oxidation reaction 
in pore water in the study area. Dissolved Oxygen in the bottom water in the study area during Spring was 6.61 
mg/L [33], however DO was low most of the year in the Eastern Harbour 3.2 - 5.7 mg/L [59]. 

During Spring, when the surface cools, a point is reached at which the temperature of the surface and bottom 
are equal. The disappearance of thermal stratification cause the entire body of water to behave as a hydrological 
unit, and the resultant mixing is known as overturn. During the overturn, the chemical and physical characteris-
tics of any body of water becomes much more uniform, and a number of chemical, physical, and biological 
changes may result. Biological activity may increase from the mixing of nutrients. Higher and negative flux 
values (upword flow from sediment to over laying water) of all nutrients could be attributed to higher sediment 
organic matter content and high biological activity. Delange [60] suggested at least three scenarios for ultimate 
source of phosphorus; Organic-P cracking, the release of phosphorus from phosphor-lipids and other high ener-
gy phosphorus compounds from plankton debris by microbial action at the sediment-water interface; dissolution 
of fish debris; and the release of phosphorus sorbed onto iron oxyhydroxides, i.e. FeOOH sorbs phosphorus 
from bottom water and from upward diffusion PW phosphate and incorporate below the oxic surface sediments 
by burial or mixing, are reduced to Fe2+, releasing the sorbed phosphate. Noel [61] reported the sediment com-
partment plays a role in the water column phosphate contents and should be considered as a buffer able to both 
store and release phosphate according to the conditions. However through exchanges at the sediment-water in-
terface and migration of the phosphate, The exchange process that in spring, biological activity was more 
stressed and a steady equilibrium cannot be reached. 

3.2. Grain size (Texture) Analysis 
Mean grain size and the median diameter may reflect the general characteristics of granule metric composition 
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of sediment. While the values of skewness and kurtosis reflects the uniformity of distribution of sediment com-
position. The distribution of sediment composition depends on the equilibrium between gravity of sediments and 
water forces. In the present study, the results of the grain size analysis of the grab sediments of the study area, 
(Table 3). Most of the sediments of El-Mex Bay are rich in sand fraction. The respective ranges of silt are from 
0.00% at station 3 to 91.20% at station 5. For clay fraction, the respective ranges were 0.00% at station 6, 7 
(front of western harbor and Far 1200 m from Station 4) to 9.12% at station 1 (El-Dekhila Head). The respective 
ranges of sand are 0.00% at station 1 (El-Dekhila Head) to 100% at stations 3, 4, 6 and 7 (Petrochemicals com-
pany, in front of El-Umum drain and western harbor and far 1200 m from EL-Umum drain). 

El-Mex sediments contained appreciable amounts of tubeworm skeletons of some calcareous organisms, bi-
valve shell fragments (placipoda, plyciopoda and gastropod) and gravel. The texture of sediments was mainly 
sandy, with some muddy sediments in stations 1, 2 and 5 (Table 3). These sediments are exposed more to the 
sea and current actions leading to such good sorting and dominance of the coarser sandy fraction. The domin-
ance is sandy mud sediments in the most stations. Most of the sediments of El-Mex drains are rich in silt fraction. 
The respective ranges of sand are from 2.36% at station 11 (El-Qalaa drain) to 39.30% at station 9 (El-Umum 
drain). Clay fraction ranged from15.74% at station 9 (El-Umum drain) to 37.72% at station 8 (El-Noubaria 
drain). The ranges of slit are 44.97% at station 9 (El-Umum drain) to 77.06% at station 10 (Mariut Lake). 

3.3. Infrared Spectra (IR) 
IR curves are normally used in mineralogy for qualitative analysis and identification of different minerals, even 
complex mixtures. It is based on positions and shapes of absorption bands [62]. Spectra of all sediment samples 
are very nearly similar indicating that the constituents are almost the same. The main features of the sediment 
absorption spectra (Figure 2) showed a broad band within the range 3100 - 3600 cm−1 assigned for O-H stret-
ching vibration of H2O which readily lost upon heating [62] [63]. These regions are mainly composed of calca-
reous sediment containing amorphous silica SiO2nH2 O) according to Degens [64]. 

A weak band within the range of 2300 - 2400 cm−1 is characteristic for absorption of carbonate minerals (cal-
cite and magnesium calcite) according to Smolander et al., [62]. The samples gave weak bending vibration 
bands within the range of 1700 - 1800 cm−1, reflecting the deformation of water molecules in clay minerals [63] 
[65]. Furthermore, the spectra of all samples showed strong broad feature at 1400 - 1500 cm−1 characteristic for 
carbonate radical [62]. The in plane bending vibration band within the range 1030 - 1090 cm−1 for O-H in the 
sediment samples appears in all regions. A peak can be seen, especially at El-Mex and El-Qalaa around 2940  
 
Table 3. Grain size analysis of El-Mex Bay and drains during spring 2010. 

Station No. 
Clay Silt Sand Sediment type Sorting Sortig 

% (Folk, 1974) Coefficient (phi) Type 

1 9.12 90.88 0.00 Silt 1.12 Poorly sorted 

2 0.42 40.55 59.03 Silty Sand 1.01 Poorly sorted 

3 0.00 0.00 100.00 Sand 1.10 Poorly sorted 

4 0.00 0.00 100.00 Sand 1.20 Poorly sorted 

5 2.06 91.20 6.75 Silt 0.75 Moderately sorted 

6 0.00 0.00 100.00 Sand 0.98 Moderately sorted 

7 0.00 0.00 100.00 Sand 0.36 Well sorted 

8 37.72 54.90 7.39 Silt Clay 2.03 Very poorly sorted 

9 15.74 44.97 39.30 Silty Sand 2.53 Very poorly sorted 

10 18.36 77.06 4.57 Silt 1.45 Poorly sorted 

11 23.79 73.85 2.36 Silty Sand 1.76 Poorly sorted 

8—El-Umum Drain, 9—El-Qalaa Drain, 10—El-Noubaria Drain, and 11—Mariut Lake. 



M. A. Shreadah et al. 
 

 
520 

%
Tr

an
sm

ita
nc

e 

 
(c) 

(b) 

(a) 

OH streching 

OH in plane 
vibration 

δ FeAIOH 
or 

MgAIOH 

v M-CO3 

3500 3000 2000 1000 2500 1500 500 
Wave number (cm−1) 

Carbonate radical 

Water deformation 

Carbonate mineral 

 
Figure 2. Infrared of sediment samples (a) Mariut Lake, (b) El-Mex, (c) El-Qalaa. 

 
cm−1 could be attributed to the asymmetrical C-H stretching of methyl (-CH2) groups being characteristic of ali-
phatic hydrocarbon [66]. The bands within the range of 780 - 800 cm−1 represent the bending in plane vibration 
band of OH groups for δMgAlOH [67]. Carbonate minerals in all sediments are identified by the wave number 
of M-CO3 stretching band within the range of 650 - 700 cm−1. The symmetric Si-O-Si stretching appeared as 
weak bands at 460 - 500 cm−1 for Mariut and El Qalla drains sediment samples [67]. 
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3.4. X-Ray Analysis for Mineral Analysis of Sediments 
Figures 3-5 and Tables 4-6 showed that the sediments comprise two main minerals: silicate and carbonate that 
appear in some sediments profile as Mg-calcite as a result of Mg substitution [68]. Silicate minerals could be 
differentiated into quartz and feldspar. For El-Max Bay, the sediment sample mainly comprises calcium 91%, 
silicate 4.2%, 1.7% sulfides and 1.4% Manganese. In El-Qalaa, the sediment sample comprises of silicate 70.7%, 
Manganese 6.7% and 6.3% Calicum. In mariut Lake, the sediment sample mainly comprises of Silicate 46.9%, 
calcium 18.1% and 13.4% Manganese. The X-Ray analysis results peformed for the present study reflecting 
predominantly of Calcium, Silicate and Manganese minerals. 

3.5. Differential Thermal Analysis (DTA) 
Differential thermal analysis is a thermoanalytic technique. In DTA, the material under study and an inert refer-
ence are made to undergo identical thermal cycles, while recording any temperature difference between sample 
and reference [69]. The DTA is illustrated in Figure 6 for station 4 of El-Mex Bay, El-Qalaa and Mariut Lake 
Sediment samples. El Mex Bay sample showed endothermic decomposition to CaO and CO2 at 700˚C - 900˚C 
[70] (Sestak, 2005). The small peaks observed for El-Qalaa drain and Mariout lake, samples indicated the pres-
ence of quartz (SiO2) because of the α to β quartz inversion. The calculated order values from the peak asymme-
try method [71] are (n = 0.46, 1.45 and 1.45) for El-Mex Bay, El-Qalaa and Mariout Lake sediment samples. 
The order of reaction indicates that the reactions are not of simple manner but the reactions proceeded in com-
plicated mechanisms. The –ΔS# values support that the sediments are more ordered and such structures are 
hardly subjected to decomposition. The small collision factor values (Z), support the view of the extra stability 
of these sediments [72] [73]. 

DTA figures gave steps due to dehydration, rearrangement and decarbonation. Table 7 illustrated that the or-
der of the reactions is ~1. The −ΔS values support that the sediments are more ordered. So, such structures are 
hardly for decomposition. This is well verified by −ΔH values. The −ΔS values are nearly of the same magni-
tude, revealing that the composition of the sediment samples is the same independent of the region of the studied 
area. The small collision factor values, Z, support the view of the extra stability of these sediments [18] [74] [75]. 
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Figure 3. X-Ray analysis peaks for a) El-Mex Bay. 
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Figure 4. X-Ray analysis peaks for b) Mariut lake. 
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Figure 5. X-Ray analysis peaks for c) El Qalaa drain. 
 
Table 4. X ray for El Mex Bay station 4. 

Label Mg Si P S Cl Ca Mn Co Cu Pb 

% Total 0.5 4.2 0.3 1.7 0.3 91 1.4 0.2 0.5 0.1 
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Table 5. X ray analysis for Mariut lake. 

Label Na Mg Al Si S Cl K Ca Ti Cr Mn Fe Zn 

% Total 0.3 1.7 12.4 46.9 0.6 0.7 3.1 18.1 1.5 0.4 13.4 0.9 0.1 

 
Table 6. X ray analysis for El Qalaa drain. 

Label Na Mg Al Si S Cl K Ca Ti Cr Mn Fe Co Cu Hg 

% Total 0.2 1.4 8.1 70.7 1.9 0.9 1.6 6.3 0.5 0.2 6.7 0.7 0.2 0.4 0.3 

 

 
 

 
 

 
Figure 6. The DTA peaks for station 4 of El-Mex Bay, El-Qalaa and mariut lake sediment. 
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Table 7. Thermodynamic parameters (DTA) for sediment samples. 

Sample Peak     
−ΔS# −ΔH# ∆G# 

 Temp (˚C) n α Tm (K) Z 

      (kj·K−1·mol−1) (kJ/mol) (kJ/mol−1) 

El-Mex 768.97 0.46 0.76 1041.97 0.98 0.26 256.69 9.19 

El-Qalaa 122.97 1.45 0.56 395.97 2.86 0.24 85.58 8.56 

Mariut lake 127.36 1.45 0.56 400.36 2.82 0.24 86.70 8.57 

4. Conclusion 
The inorganic nutrient concentrations in the BW column of El Mex Bay and its surround drains indicate that this 
area suffers from acute eutrophication, resulting from a great amount of anthropogenic nutrients entering the sea 
through numerous land-based sources. Continuous burial and decomposition of organic matter in the topmost 
layer of the sediment is the main reason for the high nutrient concentrations in the PW compared to those in the 
OBW. The variations in concentrations between sites can be mainly attributed to variations in supply and input 
of reactive organic matter. Nutrient diffusive fluxes calculated in the present study during spring, 2010 from se-
diments had averages of −7.24, −1.36, −7.86 and −1.33, however in the drains were −34.39, −32.28, −53.20 and 
−117.6 mg·m−2·day−1 for 3NO− , 2NO− , 3

4PO −  and 4
4SiO − , respectively. Based on IR X-ray diffraction and 

DTA sediment samples were mainly composed of calcite, Mg-calcite and silicate.DTA curves are used to eva-
luate and discuss different kinetic parameters (n, Ea#, ∆G#, ∆H#, ∆S#, Z and Tm) support the view of the extra 
stability of these sediments. 
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