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ABSTRACT 

Near-infrared spectroscopy coupled with kernel partial least squares-discriminant analysis was used to rapidly screen 
water containing malathion. In the wavenumber of 4348 cm−1 to 9091 cm−1, the overall correct classification rate of 
kernel partial least squares-discriminant analysis was 100% for training set, and 100% for test set, with the lowest con- 
centration detected malathion residues in water being 1 μg·ml−1. Kernel partial least squares-discriminant analysis was 
able to have a good performance in classifying data in nonlinear systems. It was inferred that Near-infrared spectros- 
copy coupled with the kernel partial least squares-discriminant analysis had a potential in rapid screening other pesti- 
cide residues in water. 
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1. Introduction 

Malathion, S-(1,2-dicarbethoxyethyl)-O,O-dimethyldthio- 
phosphate (its structural formula is shown in Figure 1) is 
one of the most commonly used organophosphate insec- 
ticides. It is extensively applied for controlling motile 
stages of mites and some other insects on fruits and ve- 
getables. Malathion toxicity, in a manner similar to all 
organophosphates, is known to inhibit acetylcholinester- 
ase and causes the accumulation of acetylcholine within 
synapses and the consequent overstimulation of postsy- 
naptic receptors [1]. 

The reported methods to determine the malathion are 
high-performance liquid chromatography [2], atomic-ab- 
sorption [3], carbon nanotube modified gold electrode [4], 
capillary electrophoresis [5], ion mobility spectrometry 
[6], dual fluorescence and electrochemical detection [7], 
CO2 laser [8]. However, these methods require expensive 
instrumentation or complicated pretreatment procedure, 
which limit their application for real-time detection of 
malathion. Thus, it is appropriate to seek fast, reliable and 
economically analytical methods of malathion by simple 
and relatively inexpensive instrumentation. 

Near-infrared spectroscopy (NIRS) [9,10] is a spec- 
troscopic method which contains the information of vi- 
brations of -CH, -OH, -NH and -SH bonds. Some NIR 
instruments are portable, and have the potential to per- 
form some analytical tasks out of the laboratory to gain 
the advantages of low cost, accuracy and test speed [11, 
12]. The purpose of this study is merely to establish a 
rapid detection method for examining malathion residues 
in water.  

2. Material and Experiment 

2.1. Sample Preparation 

Malathion (98.2% purity) was purchased from Institute 
for the Control of Agrochemicals, Ministry of Agricul- 
ture (ICAMA), while bottled water (Hangzhou Wahaha 
Group Co., Ltd., China) obtained from a local supermar- 
ket, was employed for the preparation of aqueous solu- 
tions. Stock solution of malathion (100 μg·ml−1) was pre- 
pared in water. Among prepared samples, malathion-free 
samples were pure bottled water, and the malathion-con- 
taining samples were obtained by adding standard stock 
solution into bottled water to make the concentration 
from 1 to 100 μg·ml−1. *Corresponding author. 
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Figure 1. Structural formula of malathion. 

2.2. Collection of the NIR Spectra 

An YDZ1-1 NIR spectrometer (light path was shown in 
Figure 2) from Nanjing Instrument Co., Ltd., (Nanjing, 
China) was used in this study. Liquid sample was placed 
above an integrating sphere, and covered by a gold- 
coated reflector. Incident light was transmitted through 
the sample and then reflected back from a gold-coat re- 
flector, which was compatible with the reflection charac- 
teristics of the instrument. After that the reflecting light 
passed through sample again and was transmitted to in- 
tegrated sphere for detecting. So the light passed through 
the sample twice. Each individual spectrum was the av- 
erage of 2 scans collected with a resolution of 2 nm over 
the wavelength range of 1100 - 2300 nm (wavenumber, 
9091 - 4348 cm−1). The spectra were acquired at tempe- 
rature of 25 (±1)˚C. Original NIR spectra of 100 μg·ml−1 
malathion-containing water and pure water were shown 
in Figure 3. 

2.3. Software 

Chemometric analysis, including qualitative determina- 
tion of malathion was performed in MATLAB 7.6.0 
(Math Works Inc. Natick, USA)  

3. Methods 

Partial least squares (PLS) regression [13-15] is a multi- 
variate linear projection method, which used to find the 
fundamental relations between the predictor matrix X  
and the response matrix . PLS decomposes the matrix 
of zero-mean variables 

Y
X  and the matrix of zero-mean 

variables  into the form: Y
TX TP E= +
TY UQ F= +

T

              (1) 

              (2) 

where  is the X  score matrix;  is the P X  load- 
ing matrix;  is the E X residual matrix;  is the Y  
score matrix; Q  is the Y  loading matrix;  is the 

 residual matrix.  and  represent information 
after removing most noise. Based on the correlation be- 
tween them, the linear regression model can be given by:  

U
E

U TB=

Y T U

                (3) 

In practical, the relationship between predictor matrix 
and response matrix coming from experimental data is 
often not linear. Lambert-Beer’s law [16] only works at 
monochromatic radiation, system not saturated in light,  

 

Figure 2. Light path of the YDZ1-1 NIR spectrometer. 
 

 

Figure 3. Original NIR spectra of 100 μg·ml−1 malathion- 
containing water and pure water. 
 
absorbers behaving independently, absorbers being dis- 
tributed homogenously and low concentrations. Apparent 
deviations from Lambert-Beer’s law may be caused by 
chemical and/or physical effects, instrumental effects or 
both. So non-linearity in NIR spectra may arise from fac- 
tors such as highly absorbing samples, the multiplicative 
effect of differences in particle size among samples, non- 
linear detector responses, interactions between analytes, 
etc. In our type of system, the spectral instruments opti- 
cal scattering, detector responses and high concentration 
may cause non-linear behavior.  

Kernel partial least squares (KPLS) is a novel kernel 
method developed by Rosipal et al. [17,18]. Briefly 
speaking, the kernel methods could be performed in two 
successive steps. The first step is to embed the original 
data via a nonlinear mapping ( )xΦ

( )

 in the input space 
into a much higher dimensional feature space. The sec- 
ond step is that a linear algorithm is designed to discover 
the linear relationship in that feature space (see Figure 4). 

KPLS is a nonlinear extension of linear PLS in which 
the input data are transformed into a high-dimensional 
feature space via the nonlinear mapping xΦ

( )
. For 

example, the mapping xΦ  transforms the 2-D data 
points into a new 3-D space. Figure 5(a) shows the data 
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Figure 4. The mapping φ(x) embeds the data points into a 
feature space where the nonlinear relationship now appears 
linear. 
 

 
(a) 

 
(b) 

Figure 5. The linearly inseparable data points in the origi- 
nal input space have been linearly separable in the feature 
space by nonlinear mapping. 
 
points in 2-D input space. From Figure 5(a), we can 
clearly see that the data points are linearly inseparable. 
To correctly classify the data points, a strategy adopted is 
to embed them into a new feature space where a linear 
function can be sought. Herein we continue to use the 
above nonlinear mapping. All data points in the new fea- 
ture space are plotted in Figure 5(b). From Figure 5(b), 
it can be seen that the data points, which are nonlinear in 
the original 2-D input space, have remarkably become li- 
nearly separable in 3-D feature space. Then the PLS al- 
gorithm can then be carried out in the feature space [19- 
21]. The limitation of PLS which it only can deal with 
linear system can be avoided.  

The nonlinear transformation effect in KPLS can be 
completed only by dot product as described in Equation 
(4): 

( ) ( ) ( ),i j i jK x x x x= Φ Φ

( ),

       (4) 

where i jK x x

( )

 denotes kernel function, which satis- 
fies Mercer’s theorem [17,18]. There are several kernel 
functions in common use. In this study we used the Ra- 
dial Basis Function [22-24]: 

2

2, exp
i j

i j

x x
K x x

σ

 − − =
 
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K
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n
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K

k x x k x x k x x

     (5) 

where  is kernel parameter. After kernel function and 
kernel parameter are determined,  is the kernel ma- 
trix of training set, which is computed and centered by 
using Equations (6)-(8): 

 
 
 =  
 
  




   


x X∈ t

K

ˆ
n n n n

  (6) 

where t n m×  (1 ≤  ≤ n, n: the number of training 
samples, m: the number of wavenumber variables) de- 
notes training set, and  is a n-dimensional square 
matrix, in which each element is obtained by computing 
kernel function between the two training samples. 

K K I K KI I KI= − − +            (7) 

1 1 1

1 1 11

1 1 1

n n
nI R

n
×

 
 
 = ∈
 
 
 




   


ˆE K= ;

         (8) 

The algorithm of KPLS can be summarized as follows: 
FStep 1: , Y=

;u
t Ku=

 
Step 2: Randomly initialize  
Step 3: , ;t t t←

T ;c Y t=
u Yc=

 
Step 4:  
Step 5: , ;u u u←

E

 
Step 6: Repeat Steps 3-6 until the convergence; 
Step 7: residual matrix  and F  were computed, 

, ( ) ( )T TE I tt E I tt← − − TF F tt Y← − , where I  is a 
n-dimensional identity matrix; 

Step 8: turn to step 3 until the convergence of residual 
matrix  and E F . 

The predicted data of training set are evaluated by us- 
ing Equation (9): 

( ) 1
T Tˆ ˆ ˆY KU T KU T Y

−
=

T t
U u Y

           (9) 

where  is formed by the columns of latent vector . 
 is formed by the columns of latent vector .  is 
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the response matrix.  
For test set, vK  is the kernel matrix, which is com- 

puted and centered by using Equations (10)-(12).  

( ) ( )
( ) ( )

( ) ( )
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2 1 2 2

1 2
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l l
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where v l mxt X∈ ×  (1 ≤ v ≤ l, l: the number of test sam- 
ples) denotes test set. vK  is a ( -dimensional ma- 
trix, in which each element is obtained by computing 
kernel function between test samples and training sam- 
ples.  

)l n×

v n l n
ˆ

v v lK K I K= − K I I KI− +       (11) 
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The predicted data of test set are evaluated by using 
Equation (13). 

ˆ ˆ
v vY K U=         (13) 

If the mode uses  to be an indicator vector coding 
two classes: −1 for members of Class A, 1 for members 
of Class B, a kernel partial least squares-discriminant 
analysis (KPLS-DA) model is developed. The KPLS-DA 
model is developed by regression of the predictor matrix 
X  against the response matrix .The model based on 

experimental data is established in order to assign un- 
known samples to a previously defined sample class 
based on pattern of its measured features. The threshold 
is set to an assigned value, and a sample is considered to 
be categorized correctly if the predicted value lies on the 
same side of the threshold. 

Y

The purpose of this study is merely to establish a rapid 
detection method for examining malathion residues in 
water. It simply detects whether there are malathion re- 
sidues in water, without the demand for the strict linear 
relationship between absorbance and concentration. So 
the KPLS-DA method is used to build the model in this 
study. 

The KPLS-DA codes were written by the author ac- 
cording to the algorithm proposed above. 

4. Results and Discussion 

4.1. Selecting of Training and Test Sets 

For the study, 2/3 of the spectra were utilized for training 
and the remaining 1/3 were kept for test. Accuracy of the 
models was reported by the number of misclassified sam- 

ples. A total of 140 prepared samples were utilized as a 
training set (68 malathion-free samples and 72 malathion- 
containing samples) and 70 prepared samples (34 mala- 
thion-free samples and 36 malathion-containing samples) 
were utilized for test. 

4.2. Results of KPLS-DA Model 

In this research we used the Radial Basis Function. In the 
indicator vector of sample classes, −1 was for water sam- 
ples not containing malathion and 1 was for water sam- 
ples containing malathion (1 - 100 μg·ml−1). The thresh- 
old was set to 0 for detecting whether water containing 
malathion. The water containing malathion was classified 
correctly if the value was above 0, and for the pure water, 
the value was below 0. The number of factors and the 
value of σ2 for the final KPLS-DA model were selected 
by observing the correct classification rate of each class.  

For the final KPLS-DA model, the number of factors 
was 15 and the value of σ2 was 0.045. In the wavenum- 
ber from 4348 to 9091 cm−1, the correct classification 
rates were 100% for training set, and 100% for test set. 
The predicted results of samples in training set and test 
set were shown in Figures 6 and 7 respectively. 
 

 

Figure 6. Predicted results of KPLS-DA in training set (“●”, 
pure water, “+”, malathion-containing water). 
 

 

Figure 7. Predicted results of KPLS-DA in test set. 

Copyright © 2013 SciRes.                                                                                AJAC 



C. Y. GU  ET  AL. 115

It was known that the highest concentration of mala- 
thion among misjudged samples was 1 μg·ml−1 and satis- 
factory correct classification rates (100%) were obtained. 
So for the KPLS-DA method, the lowest concentration 
detected malathion residues in water was 1 μg·ml−1. 

5. Conclusion 

Based on KPLS-DA method, malathion in water samples 
could be detected by NIR spectroscopy. Results showed 
that at the wavenumber from 4348 cm−1 to 9091 cm−1, a 
classification accuracy of 100% for training set, and 
100% for test set were obtained, with the lowest concen-
tration detected malathion residues in water being 1 μg· 
ml−1. Compared to other qualitative analysis methods, 
(for example, cluster analysis), KPLS-DA displayed re- 
sults more directly to us in a form of scattergram and 
could be used as a “concentration sieve” by setting dif- 
ferent threshod. If the threshold being the maximal con- 
centration permitted in water, samples containing mala- 
thion at a concentration lower than the threshod were 
qualified, otherwise not qulified, and then rapid on-site 
determination could be achieved. If necessary, the non- 
passing samples were left to accept the quantitative ana- 
lysis of HPLC, GC, etc. Therefore, a lot of labor, mate- 
rial and money could be saved. The main advantages of 
this near infrared method are convenient sampling, no 
pretreatment, no consumption of organic solvent and 
short measurement time (5 min). It can be concluded that 
the proposed spectrometric methodology is a fast and en- 
vironmentally friendly alternative to the classic chroma- 
tographic procedures for rapid screening water contain- 
ing malathion. Although only malathion was just detected 
in this study, we could infer that NIR spectroscopy cou- 
pled with the KPLS-DA method may have a potential in 
rapid screening other pesticide residues in water. 
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