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Abstract 
Improvements that can be attained in seasonal climate predictions in various 
parts of Africa using the multimodel supersensemble scheme are presented in 
this study. The synthetic superensemble (SSE) used follows the approach 
originally developed at Florida State University (FSU). The technique takes 
more advantage of the skill in the climate forecast data sets from atmosphere- 
ocean general circulation models running at many centres worldwide includ-
ing the WMO global producing centers (GPCs). The module used in this 
work drew data sets from the Four versions of FSU coupled model system, 
seven models from the DEMETER project which is the forerun to the current 
European Ensembles Forecast System, the NCAR Model, and the Predictive 
Ocean Atmosphere Model for Australia (POAMA), all making a set of 13 in-
dividual models. An archive consisting of monthly simulations of precipita-
tion was available over all the 5 regions of Africa, namely Eastern, Central, 
Northern, Southern, and Western Africa. The results showed that the SSE 
forecast for precipitation carries a higher skill compared to each of the mem-
ber models and the ensemble mean. Relative to the ensemble mean (EM), the 
SSE provides an improvement of 18% in simulation of season cycle of preci-
pitation climatology. In Eastern Africa, during December-February season, a 
north-south gradient of precipitation prevails between Tropical East Africa 
and the sector of the region towards Southern Africa. This regional scale cli-
mate pattern is a direct influence of the Intertropical Convergence Zone 
(ITZC) across the African continent during this time of the year. The SSE 
emerges with superior skill scores such as lowest root mean square error 
above the EM and the member models, for example in the prediction of spa-
tial location and precipitation magnitudes that characterize the see-saw pre-
cipitation pattern in Eastern Africa. In all parts of Africa, and especially East-
ern Africa where seasonal precipitation variability is a frequent cause huge 
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human suffering due to droughts and famine, the multimodel superensemble 
and its subsequent improvements will always provide a forecast that out-
weighs the best Atmosphere-Ocean Climate Model. This approach and re-
sults herein imply that climate services centres worldwide and Africa in par-
ticular can make more objective use of model forecast data sets provided by 
global producing centres (GPCs) for consensus climate outlooks. 
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1. Introduction 

The livelihoods and economies of most African countries depend on rain-fed 
agriculture. The rainfall is seasonal everywhere in the continent and for any 
given season, there are many periods when the seasonal precipitation amounts 
are too low to support agriculture and sometimes too heavy. Thus climate ex-
tremes in form of droughts and floods are very common in most parts of Africa 
and they have catastrophic impacts. Improved climate predictions for Africa is 
the only means of providing quantitative information that can be used for plan-
ning and management of socio-economic activities dependent on seasonal pre-
cipitation. Good examples are the climatic extremes experienced in East Africa 
from 1997 through 2000. The period September 1997 to March 1998 was a pro-
longed season of devastating rainfall floods in East Africa and those rainfall 
floods were also associated to the 1997/98 warm ENSO event [1] [2]. In Kenya, 
the 1997/98 floods caused rotting of food crops due to water logging and too 
much water vapour in the air, submerging of homes in urban and rural areas, 
huge destruction of roads and bridges and disease outbreaks due to contamina-
tion of fresh water supplies. The total economic loss due to the 1997/98 floods 
over Kenya has been estimated to the tune of US $670 million according to [3]. 
A severe drought and famine ravaged much of Kenya and Southern Ethiopia 
from mid 1998 through 2000 and it’s catastrophic impacts included starvation of 
communities, massive deaths of livestock, lack of water for domestic and indus-
trial use including hydropower generation, and closure of industries. The im-
pacts of these climatic extremes can be minimized with availability of high accu-
racy climate forecasts for Africa, examples of which are illustrated in this study. 

Droughts and floods are basically extremes embedded within the interannual 
variability of climate over the various regions of Africa. The mechanisms that 
have been linked to climate extremes in East Africa include the El Niño/Southern 
Oscillation (ENSO), boundary forcing of certain sea surface temperature (SST) 
anomalies in the oceans, and fluctuations in the large-scale atmosphere-ocean 
circulation system. These mechanisms have been studied by many authors in-
cluding [1] [2] [4] [5]. Thus, the predictability of the seasonal climate extremes 
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is not only an interesting scientific venture, but the quantified forecast informa-
tion is the only means of providing societies with the quantitative information 
that can be factored into early warning, policy decision, and disaster prepared-
ness in advance of the onset of the extremes. Precipitation in form of rainfall is 
by far the most important climate element over all the regions of Africa, and it 
will constitute the main subject of the present study. The objective of this study 
is to illustrate that it is possible to produce quantitatively skillful seasonal rain-
fall/climate forecasts over various regions of the Africa by an optimal combina-
tion of real-time forecasts made by the state-of-art global climate models (GCMs) 
that are running at several centers worldwide. In addition to addressing the fo-
recasting needs, accurate predictions can also help in understanding the evolu-
tion of the climate mechanisms over the diverse regions of the continent. 

One of the most authoritative illustrations of the performance of GCMs in the 
simulation of various variables of the climate may be found in [6] following the 
multimodel data sets of the Atmospheric Model Intercomparison Project (AMIP) 
which has evolved to the World Climate Research Programme (WCRP) Coupled 
Model Intercomparison Project which is currently at Phase 6 (CMIP6). AMIP 
results of the late 1990s and the current results from the Atmosphere-Ocean 
General Circulation Models (AOGCMs) of [7] reveal that there are still big 
model-to-model differences in simulation of precipitation and this is still the 
status in climate prediction and projection models “global producing centre 
models (GPCs)” and CMIP6 models. 

Climate forecasts, even from the state-of-the-art AOGCMs inevitably suffer 
from model differences and model errors. Following the modeling experiences 
from AMIP results of early 2000s to CMIP5 and CMIP6 results of later 2019, the 
multimodel ensemble mean (EM) method evolved as one way of overcoming 
problems associated with model errors (that arise from truncation, discretiza-
tion, sampling of boundary conditions, and also from unknown sources). Within 
the recent years, the use of multimodel forecasts and EM has been an important 
component in climate predictions done at many centers worldwide [8]. The skill 
of single and multi-model ensembles has been reported in many studies includ-
ing [9] [10] [11]. Forecasts made from model ensemble systems and the EM still 
show large space and time variability in skill. Owing to modeling differences, 
some models have better skill than others, yet the EM weights all the member 
models equally. The multimodel superensemble scheme developed at the Florida 
State University (FSUSE) has emerged as an objective means of overcoming 
these practical difficulties. Some good studies which have used the FSUSE 
scheme in climate forecasts include [12] [13]. By using a criteria that reduces the 
root mean square error (RMSE) for each individual model forecast based on its 
past performance, FSUSE product emerges superior to the multi-models and the 
ensemble mean [14]. 

The mutlimodel superensemble forecast scheme used in the present study is a 
modified version of the conventional FSUSE approach. The variation is necessi-
tated by attributes in the observational analysis field and member model fore-
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casts that affect the skill of the consensus product. Poor analysis field and low 
skill in individual member models degrade the skill [14]. In the conventional 
approach, the optimal weights used to combine the models are derived from the 
past performance of each model and minimization of the root mean square er-
ror. This criterion however does not ensure that the spatial-temporal multimo-
del fields evolve consistently with the dominant spatial-temporal evolution of 
the observations [15] [16]. Furthermore, redundancy in both multimodel data 
sets and analysis fields may also mask some useful aspects of the superensemble 
forecast product. In this study, the conventional superensemble technique is 
modified by inclusion of these aspects to improve the data quality and enhance 
the stability of the climate forecasts in the various regions of Africa. This version 
is called synthetic superensemble, hereafter referred to as SSE. It has given major 
improvements in seasonal climate forecasts, not only on the improved skill 
scores, but also predictability of the spatial patterns of the climate evolution and 
some results on it’s performance may be found in [12] [15]. 

A set of 13 GCMs is used in this study to construct the SSE forecasts in five 
regions of Africa. The sregions are delineated in accordance with the large scale 
forcing mechanisms that prevail during the course of the year. The regions are 
presented in Figure 1. In particular, the study attempts to determine if there is 
an improvement in the use of SSE relative to the EM and individual models in 
the simulation of annual cycle of precipitation, simulation of the spatial extend 
and magnitude of seasonal precipitation, and capability in forecasting the sea-
sonal extremes, especially those associated with the evolutionary phases ENSO 
phenomenon. East Africa is used as a region of detailed study. It is a region 
where, like most tropical areas, interannual variability is strongly influenced by 
ENSO [17]. The climate models used are discussed in the next section. Section 3 
provides an outline of the SSE scheme, the observational analysis fields used, and 
the measures of skill used. Section 4 is a discussion of results and Section 5 
presents conclusions. 
 

 
Figure 1. The five regions of Africa used in the study. 
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2. The Global Climate Models 

The first set of climate models used in the study is the FSU ensemble system 
consisting of four versions the FSU atmospheric model following [18] that is 
coupled to the Hamburg Ocean Model following [19]. The four FSU versions are 
configurations of this atmospheric-ocean system with two versions of the cu-
mulus parameterization scheme, the modified Kuo scheme following [20], and 
the Arakawa-Schubert type of scheme following [21]. The model can also use 
two versions of radiative transfer scheme, an “older” emissivity-absorptivity ra-
diative transfer procedure following [22] and a “newer” version of radiative 
transfer scheme according to [23]. The FSU model with Kuo scheme with ‘older’ 
radiation is called “KOR”; the version with Kuo scheme combined with “newer” 
radiation scheme is called “KNR”; the version using Arakawa-Schubert scheme 
with “older” radiation procedure is “AOR”, and that using Arakawa-Schubert 
scheme combined with “newer” radiation is called “ANR”. 

The fifth model is National Center for Atmospheric Research (NCAR) com-
munity climate model (CCM3). CCM3 is spectral and the version used in our 
study is a triangular truncation at 63 waves, and 26 levels in the vertical 
(T63L26). A complete description of CCM3 is provided by [24]. 

The sixth model in the set is the Predictive Ocean Atmosphere Model of Aus-
tralia (POAMA). POAMA is also a spectral model, and the version used in these 
results is a T42L17. 

The other seven models in the study are the Development of a European Mul-
timodel Ensemble System for seasonal to interannual prediction, called DEMETER 
multi-model ensemble system. DEMETER prediction system comprised coupled 
ocean-atmosphere models of the following institutions: the European Centre for 
Medium-Range Weather Forecasts (ECMWF); UK Met Office (UKMO); Max- 
Planck Institutfür Meteorologie, Germany (MPI); Istituto Nazionale de Geofisi-
ca e Vulcanologia, Italy (INGV); European Centre for Research and Advanced 
Training in Scientific Computation, France (CERFACS); Centre National de 
Recherche Météorologiques, France (CNRM); and Laboratoired’ Océanographie 
Dynamique et de Climatologie, France (LODYC). DEMETER models have been 
used in hindcast simulations of monthly global climate over the years 1989-2001, 
for which initial data assimilation were the ERA-40. The ERA-40 is a European 
Reanalysis Project that availed high-quality global analysis of atmosphere, land 
and ocean conditions for the years 1957-2002. The ERA-40 reanalysis are de-
scribed in [25]. Details of the DEMETER models and climate simulations may be 
found in [26]. Table 1 provides an overview of the 13 models and the length of 
monthly simulations of precipitation for each model used in the study.  

3. Data Sets and Methods 
3.1. Data Sets 

The observed precipitation data sets used are the Climate Prediction Center  
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Table 1. Summary of the 13 climate models and length of monthly averages of climate parameters available for each model used 
in the study. 

Name and source 
Model characteristics Length of month 

by month model 
forecast data Nature Resolution Initial conditions 

KOR, FSU 
Spectral atmosphere model coupled 

to HOPE ocean model 
T63L14 ECMWF with Physical Initialization 1989-2001 

KNR, FSU 
Spectral atmosphere model coupled 

to HOPE ocean model 
T63L14 ECMWF with Physical Initialization 1989-2001 

AOR, FSU 
Spectral atmosphere model coupled 

to HOPE ocean model 
T63L14 ECMWF with Physical Initialization 1989-2001 

ANR, FSU 
Spectral atmosphere model coupled 

to HOPE ocean model 
T63L14 ECMWF with Physical Initialization 1989-2001 

CCM3, NCAR 
Spectral atmosphere model coupled 

to NCOM Slab ocean model 
T63L26 AVN 1989-2001 

POAMA, AUSTRALIA 
Spectral atmosphere model coupled 

to ACOM ocean model 
T47L17 BAM analysis 1989-2001 

CERFACS, FRANCE 
Spectral atmosphere model coupled 

to OPA 8.2 ocean model 
T63L31 ERA-40 1989-2001 

CNRM, FRANCE 
Spectral atmosphere model coupled 

to OPA 8.0 ocean model 
T63L31 ERA-40 1989-2001 

LODYC, FRANCE 
Spectral atmosphere model coupled 

to OPA 8.2 ocean model 
T95L40 ERA-40 1989-2001 

INGV, ITALY 
Spectral atmosphere model coupled 

to OPA 8.1 ocean model 
T42L19 Coupled AMIP-type 1989-2001 

MPI, GERMANY 
Spectral atmosphere model coupled 

to MPI-OMI ocean model 
T42L19 Coupled Run 1989-2001 

UKMO, UK 
Spectral atmosphere model coupled 

to GloSea OGCM ocean model 
T63L31 ERA-40 1989-2001 

ECMWF, Europe 
Spectral atmosphere model coupled 

to HOPE-E ocean model 
T95L40 ERA-40 1989-2001 

 
(CPC) precipitation called CMAP. The data is global, starting from 1979 to 
present and the part used in the study was for the 13 years 1989-2001. CMAP 
data is created by a technique that produces monthly values and patterns of 
global precipitation by merging rain gauge observations with precipitation esti-
mates from several satellite-based algorithms that makes use of infrared and mi-
crowave channels. CMAP data set may contain an artificial downward trend for 
the period after 1996. In the study, the data is used for qualitative applications 
and results are verified against station records wherever applicable. A descrip-
tion of CMAP data is according to [27].  

For all the 13 global climate models, an archive consisting of month by month 
hindcasts for a 13 year period 1989-2001 was available for the study. A summary 
of these model data sets is included in Table 1. From these model archives and 
observational data sets, annual cycles and interannual variability of precipitation 
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were extracted and studied using the multimodel superensemble scheme as out-
lined in the next section. 

3.2. The Multimodel Superensemble Scheme 

The Florida State University multimodel superensemble technique has been de-
veloped as a tool for making skillfully deterministic forecasts by a combination 
of global model forecasts that are made by many centers round the world. The 
scheme follows the studies of [8] [12] [28] briefly outlined as follows. Given a set 
of climate forecasts from a group of “N” multilevel global models, the conven-
tional multimodel superensemble (S) is defined by the multiple linear regression 
equation: 

( )
1

N

i i i
i

S a Y Y Z
=

= − +∑                      (1) 

where S is the multimodel superensemble, ai is a statistical weight for the ith 
model, Yi is the ith model forecast, iY  is time average of the forecast by the ith 
member model, and Z  is the time average of the observation. For the deter-
mination of the statistical weights, the forecast time line is split into 2 parts, a 
training period and a validation period. The statistical weights are then deter-
mined by the minimization of the root-mean-square error (RMSE) function (E): 

( )2

1

rainT

t t
t

E S Z
=

= −∑                       (2) 

where Train denotes the length of the training period. St is the multimodel supe-
rensemble and Zt the observation. This process is also referred to as the conven-
tional multimodel superensemble scheme and the regression coefficients ai are 
solved for using a Gauss-Jordan elimination algorithm. The weights are calcu-
lated at every grid point and at every vertical level over the whole training period 
of the superensemble. For a single level climate parameter such as precipitation, 
there are as many as 1.7 × 106 weights. 

For all the models, the total length of monthly data was 13 years and 12 
months for each year. This length was too short to give stable results in forecasts 
of climate. Cross validation was used to increase the statistical stability the cli-
mate forecasts. A good discussions on the usefulness of cross validation may be 
found in [29] [30]. The cross validation procedure was done by exclusion of one 
year at a time, training the superensemble with the remaining data series and 
using the weights obtained to forecast the year excluded. All the climate results 
discussed in this study are cross validated. 

3.3. The Multimodel Synthetic Superensemble Scheme 

As discussed in Section 1, the change from conventional superensemble scheme 
to the synthetic superensemble (SSE) technique is necessitated by attributes in 
the multimodel predictor data sets and analysis field that degrade the skill of the 
forecasts as discussed in [14] [15] [28]. 
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The multimodel predictor data set for each model and the predict and analysis 
field are first pre-processed into empirical orthogonal functions (EOFs) that 
represent the most significant modes of internal variance in space and the cor-
responding principal components (PCs) that track the temporal evolution of the 
map patterns. Assuming that there are a total of “m” leading EOFs and PCs of 
each member model “i” and observations, all of which are determined over a 
training length (t), the predictand (Z) and the multimodel predictor set (Yi) are 
expressed as linear combinations of EOFs and PCs by: 

( ) ( ) ( )
1

,
M

m m
m

Z x t Z t e x
=

= ∑ �                    (3) 

( ) ( ) ( ), ,
1

,
M

i i m i m
m

Y x t Y t e x
=

= ∑ �                   (4) 

where ( )mZ t� , ( ),i mY t�  and ( ),i me x  are the PC and EOF corresponding to the 
mth mode for the observation and the ith member model. M is the total number 
of EOFs used. The number of EOFs used in the analysis is such that the cumula-
tive variance recovered by those EOFs is at least 95% because the objective of 
using EOFs in this case is to improve the quality of the data sets. The PCs re-
quired in Equations (3) and (4) are calculated over the length of training phase 
(t).  

The next problem is the determination of spatial patterns of multimodel pre-
dictor field that evolves in a way that is most consistent with the EOFs of ob-
served analysis. This consistent pattern is obtained by a regression of the predic-
tand PCs calculated by Equation (3) onto the PCs of the models calculated by 
Equation (4). This is a linear regression problem on EOF space and it is given by 
the equation: 

( ) ( ) ( ), , ,
1

M

i m i m i m
m

Z t a Y t r t
=

= +∑� �                  (5) 

where ai,m are regression coefficients and ri,m is the residual error of the ith model 
at the mth EOF mode. The coefficients ai,m are determined such that the residual 
error variance E(r2) is minimum and once the coefficients are determined, PCs 
of the predictor multimodel set over the total time line (T) are given the equa-
tion: 

( ) ( ), ,
1

M
reg

i i m i m
m

Y T a Y T
=

= ∑� �                     (6) 

The new PCs are computed for each model, and they are referred to as mul-
timodel synthetic ensemble predictor set. The synthetic multimodel predictor 
field is given by: 

( ) ( ) ( ),
1

, i m

M
syn reg

i m
m

Y x T Y T e x
=

= ∑ �                  (7) 

The rest of the synthetic superensemble forecast scheme proceeds following 
the conventional multimodel superensemble technique as outlined in section 3.2 
above. 
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3.4. The Statistical Measures of Skill 

The measures of skill used in the study include the root mean square error 
(RMSE) and anomaly correlation. The root mean square error (RMSE) is always 
positive. It measures the total error and a minimum RMSE is a basic criterion 
used in the construction of superensemble forecast scheme. Anomaly correlation 
is also used to measure how well the forecast departs from the climatological 
mean in comparison to departures from the same climatological mean in the ve-
rification analysis. A detailed discussion of statistical measures of skill and their 
use in the validation of superensemble forecasts may be obtained from [31]. 

4. Results and Discussion 

In the assessment of climate simulations and forecasts using a global climate 
model (GCM) it is important that the modeled and observed climate variables 
are compared and some measures of goodness used to quantify the model skill. 
Africa is climatologically diverse and different areas have unique regimes of an-
nual cycle of seasonal precipitation and atmospheric circulation. Considering 
precipitation, various regions of the continent experience clearly defined wet and 
dry seasons. For example, areas of tropical Africa within the neighborhood of 
the equator have two wet seasons during the year, referred to as bimodal preci-
pitation regime and areas further to the north and south experience a unimodal 
distribution [32]. A comprehensive discussion of the physical mechanisms asso-
ciated with seasonal climate in the various regions of Africa may be found in 
[33] [34] among other studies. Thus a starting point in using a climate model to 
provide climate forecasts is first to ascertain that the model is capable of simu-
lating realistically the annual and seasonal cycles of climate over the region of 
interest. Taking Eastern Africa (20˚E - 50˚E, 20˚S - 10˚N) as a region for detailed 
study analysis, the following discussion highlights these aspects using the 13 in-
dividual models, the multimodel ensemble mean (EM) and the superensemble 
(SSE) simulations. 

4.1. Annual and Seasonal Cycle of Precipitation in East Africa 

Figure 2 shows the climatology of precipitation for each month of the year in 
the East African region. The observations used are the CMAP data sets of [27] 
and the long term means for each month were calculated over the 13 year period 
1989-2001. In January, the precipitation can be up to 4 mm/day and the 
amounts decrease during February, and subsequent months to a minimum of 1 
mm/day in June. June to August is a dry season and significant amounts of rain-
fall starts to be received in September and increase to be as high as 3.5 mm/day 
in December.  

Figures 3(a)-(p) presents the observed and model simulated spatial distribu-
tion of precipitation climatology during the December - February (DJF) season 
in Eastern Africa. Figure 3(a) shows the observed pattern and it can be noticed 
that during the DJF season, there exists a regional north-south gradient of  
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Figure 2. Monthly climatology of precipitation (mm/day) in Eastern Africa from CMAP 
data sets of Xie and Arkin (1997). 
 

 
 

 
Figure 3. Observed and simulated climatology of precipitation during December-February 
(DJF) season in Eastern Africa by the superensemble (SSE), ensemble mean (EM), and 
member models. Contour interval is 2 mm/day: (a) Observations, (b) SSE, (c) EM, (d)- 
(p) Member models 1 to 13. (a) OBScli; (b) SSEcli; (c) EMcli; (d) M01cli; (e) M02cli; (f) 
M03cli; (g) M04cli; (h) M05cli; (i) M06cli; (j) M07cli; (k) M08cli; (l) M09cli; (m) M10cli; 
(n) M11cli; (o) M12cli; (p) M13cli. 
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precipitation. The gradient consists of heavy precipitation southwards of the 
equator, and a general precipitation deficit northwards. It is found that south-
wards of the equator, the precipitation amounts are greater than 3 mm/day, and 
to the north, the season precipitation is substantially less.  

An important question that may be considered is whether the model precipi-
tation amounts are comparable to those in the observed annual cycle, and if the 
spatial distributions in the model and observations are physically consistent with 
the synoptic mechanisms that prevail during the season. The Intertropical Con-
vergence Zone (ITCZ) is the main mechanism of seasonal precipitation in East-
ern Africa, and during the DJF season, it is located within the southern sector of 
Eastern Africa. Furthermore, the Northeasterlies flowing into the Southern sec-
tor of Eastern Africa are a component of the Indian Ocean winter monsoon cir-
culation [34], and the consequence is heavy rainfall over the southern sector. 
The observed north-south precipitation gradient appearing in Figure 3(a) is 
therefore physically consistent with the large-scale circulation mechanisms. 

Figure 3(b) shows the DJF precipitation climatology simulated by the supe-
rensemble (SSE). Comparing Figure 3(b) with Figure 3(a), it is seen that the 
spatial distribution of precipitation and magnitudes in the SSE product represent 
all the salient features of the observed season precipitation. The SSE simulated 
precipitation exhibits the regional scale north-south gradient very well. The si-
mulation of the DJF climatology by the multimodel ensemble mean (EM) is 
shown in Figure 3(c) and one of the most notable shortcoming of the EM is an 
underestimation of the gradient pattern and the northward coverage of precipi-
tation is beyond area of observed precipitation. The performance of the individ-
ual models is shown in Figures 3(d)-(p). It is found that some of the models are 
a very poor representation of season climatology, for example models 8 and 10 
shown in Figure 3(k) and Figure 3(m). Most of the other models capture to 
some extend an aspect of the season climatology, but there is a big difference 
from model to model in the simulation of precipitation magnitudes and spatial 
distribution. Nevertheless, it is useful to investigate how the entire annual cycle 
of precipitation climatology is represented by the SSE, EM, and the member 
models.  

The performance of the member models, the EM, and the SSE in simulation of 
the complete annual cycle of precipitation in East Africa is shown in Figure 4 for 
the four seasons March-May (MAM), June-August (JJA), September-November 
(SON), and December-February (DJF). In Figure 4, the bars show the precipita-
tion in mm/day and for each season, first bar is the observation, the next 13bars 
are the models 1 to 13, 14th bar is the EM, and the last bar is the SSE. For any 
season, the difference between the observation and the models is an expression 
of model skill/performance. From these results, it is evident that there are two 
main wet seasons MAM and SON separated by a drier JJA season for Eastern 
Africa. The DJF season is slightly wetter than JJA. In general, the annual cycle is 
a bimodal distribution in Eastern Africa and the member models simulate this 
basic characteristic with a big difference in skill from model to model. For all the  
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Figure 4. Simulation of the complete annual cycle of precipitation climatology in East 
Africa by the member models, ensemble mean (EM) and superensemble (SSE) during 
seasons MAM, JJA, SON, and DJF. For every season, the observation is first bar and last 
2-bars are EM and SSE. 
 
seasons, it is found that the SSE precipitation is closest to the observation and it 
is only during MAM season that the EM is comparable to the observation. An 
effective way to compare the SSE simulation with the EM (or a member model) 
is computation of the difference between the SSE and EM (or a member model) 
and then dividing by the EM (or member model) and multiplying by 100 so as to 
express the skill as a percentage improvement [31]. Using this approach, it is 
may be deduced that the SSE provides an average improvement of 18% above 
the EM in the simulation of the season to season climatology of precipitation. 
Thus in addition to simulating a realistic annual cycle, the superensemble re-
solves the huge inter-model differences. This skill capability of the superensem-
ble is also valid for Central, North, South, and West Africa domains and it indi-
cates that the SSE scheme can be relied upon to make seasonal forecasts of pre-
cipitation.  

4.2. Seasonal Forecasting of Precipitation 

Figure 5 shows the root mean square error (RMSE) in forecasts of Janu-
ary-March (JFM) seasonal precipitation in East Africa for all the 13 years 
1989-2001. The forecasts were made by each member model, the multimodel 
ensemble mean (EM), and by the multimodel synthetic superensemble tech-
nique (SSE). Comparing the RMSE of the members and EM, it is noted that the 
EM is a generally a superior forecast product relative to the individual models. 
For example in all the 13 years, it is only 4 cases where an individual model 
shows lower error than the EM. This outcome suggests that given a suit of mod-
els, the forecast made by a simple averaging of all the individual model forecasts 
is a product superior to the individual models, and it is these type of results that 
motivated the use of multimodel ensemble mean methodology that has been 
popularly used in many centers worldwide [8]. However, comparing the EM and 
SSE forecast as illustrated in Figure 5 by the last 2-bars for each year, it is seen  
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Figure 5. Root mean square error (RMSE) in precipitation anomaly forecasts (in mm/day) 
during January-March over East Africa from the 13 models, ensemble mean (EM) and 
superensemble (SSE). For each year, the last 2-bars are EM and SSE. The numbers ap-
pearing on top are the confidence level (in percentage) at which the SSE RMSE is differ-
ent from that of the EM using a t-test statistic (see Appendix). 
 
that in 12 of all the 13 years, the RMSE of the superensemble is smaller than that 
of the ensemble mean.  

It is important to establish the confidence level at which the RMSE of the SSE 
is superior to that of the EM. A student’s t-test statistic is used. The test is con-
structed under the null hypothesis that no difference exists, and details of the 
t-test are given in Appendix. The percentage significance level at which the 
RMSE of the SSE forecast is superior to that of the EM product in each one of all 
the years are illustrated by the additional numbers appearing on the top of Fig-
ure 5. For the East African JFM season precipitation, the average RMSE in the 
forecasts made by the SSE and EM are 1 mm/day and 1.5 mm/day respectively. 
The total errors of the member models are much higher than these values and 
these larger errors indicate low skills in the members. On average, it is seen that 
in the forecasts of JFM season precipitation, the SSE performs 33% better than 
the EM with a confidence of 85%.  

Figures 6(a)-(c) illustrate the total errors in seasonal forecasts of precipita-
tion in three other regions of Africa. The seasons considered are March-May 
(MAM) in Central Africa shown in Figure 6(a), July-September (JAS) illustrated 
in Figure 6(b) for North Africa, and also JAS season in West Africa demon-
strated in Figure 6(c). It is seen from these results that, in all the regions, the to-
tal errors in the member models are remarkably higher than those of the en-
semble mean and the superensemble. The superensemble performs much bet-
ter than the ensemble mean in all regions. For example, in the JAS 1989 preci-
pitation over North Africa shown in Figure 6(b), the ensemble mean RMSE 
was 1.5 mm/day, while the superensemble RMSE was only 0.5 mm/day. This is 
equivalent to improving the forecast by the ensemble mean by 67%. It is also 
found that in all the three regions of Africa, the RMSE of the superensemble 
product is superior to that of the ensemble mean at a confidence level above 
95%.  

4.3. Precipitation Extremes Associated with ENSO in Eastern  
Africa 

In Eastern Africa, one of the global mechanisms that is associated with extremes 
in the interannual variability of seasonal precipitation is the El-Nińo/Southern  
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(a) 

 
(b) 

 
(c) 

Figure 6. (a) The root mean square errors in seasonal forecasts of precipitation. March- 
May (MAM) season in Central Africa. For each year, the last 2-bars are EM and SSE as in 
Figure 5; (b) The root mean square errors in seasonal forecasts of precipitation. Ju-
ly-September (JAS) in North Africa. For each year, the last 2-bars are EM and SSE as in 
Figure 5; (c) The root mean square errors in seasonal forecasts of precipitation. Ju-
ly-September (JAS) season in West Africa. For each year, the last 2-bars are EM and SSE 
as in Figure 5. 
 
Oscillation (warm ENSO) phenomenon. The Tropical Eastern sector of East 
Africa receives heavy precipitation during the warm ENSO phase [2] [32], while 
the southern sector of the region extending into Southern Africa suffers drought 
conditions. The condition reverses during the cold ENSO phase to give drought 
conditions in the Tropical Eastern Africa and enhanced precipitation in Sou-
theastern Africa [35] [36]. Studies using global climate models done over the re-
gion, including those of [1] [2] suggest that the ENSO teleconnection with East 
Africa precipitation during the seasons within September to February is physi-
cally consistent with the underlying boundary forcing and atmospheric dynam-
ics. 

Figure 7 shows a time-longitude section, also called hovmoller diagram of 
precipitation in East Africa from longitude 20˚E to 50˚E during the years 1989 to 
2001 for seasons MAM, JJA, SON, and DJF. Figure 7(a) shows the observed 
pattern. One of the most conspicuous precipitation events in Figure 7(a) is the 
1997/98 flood event that started during the season September 1997 and contin-
ued into early months of 1998. It has been associated with the 1997/98 El-Niño 
phenomenon [2]. The suppressed precipitation leading to the droughts of 1996 
and 1999 which were associated with La Niña event of these years are also evi-
dent in Figure 7(a). Figure 7(b) shows the corresponding SSE forecast. It 
found that the succession of wet and dry events in the SSE forecast and their  
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Figure 7. Time-longitude cross section of precipitation in East Africa for seasons MAM, 
JJA, SON, and DJF for years 1989-2001. Contour interval 2 mm/day. (a) OBS, Observa-
tions; (b) SSE; (c) EM; (d) M09, Best model. 
 
longitudinal positions coincide very well with observations. The precipitation 
magnitudes are also to the same order. The ensemble mean (EM) and best per-
forming member model time-longitude sections are shown in Figure 7(c) and 
Figure 7(d). Comparing the EM to the observations, it is may be seen that the 
wettest events that occur in the westward side of East Africa are shifted east-
wards, and the magnitudes seem too high. On the other hand, the best perform-
ing member model tends to underestimate the wet events, for example the mag-
nitude of the 1997/98 flood in the best model is just a small precipitation signal 
to the extreme east of the region. This result can be seen by comparing the pat-
terns along year 1998 in Figure 7(a) and Figure 7(d). 

Figure 8 presents the interannual variability of East Africa precipitation dur-
ing the September-November (SON) season as simulated by the superensemble, 
the ensemble mean, and a member model. It is found that the overall wet and 
dry precipitation events associated with ENSO events are captured with some 
appreciable skill. From Figure 8, good examples are the droughts of 1996 and 
1999 which were associated with La Niña events and the El Niño associated 
floods of 1994 and 1997. The superensemble does not capture well the precipita-
tion magnitude of the 1997 event during SON season, but the peak is evident in 
the result. An explanation for this outcome could be that in the 1989-2001 mul-
timodel archives that were available for the study, this was the only intense pre-
cipitation extreme in East Africa. The cross validation approach used in the li-
near regression omits its weights out of the linear regression model that forecasts  
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Figure 8. Interannual variability of September-November (SON) precipitation anomalies 
in East Africa during the 13 years 1989-2001. 
 
it and this lowers the statistical skill in its prediction. In a operational applica-
tion, a multimodel data set of at least 30 years will give even better results be-
cause within a 30 year climatological period, there would be a number of ENSO 
and/or sea surface temperature (SST) associated precipitation extremes and 
therefore several superensemble weights. It is interesting to study how the vari-
ous models, the EM, and SSE performed in the placement of the precipitation 
anomalies for these wet and dry extremes in the climate.  

Figures 9(a)-(p) illustrate the space patterns of observed and simulated pre-
cipitation anomalies during September-November (SON) season of the year 
1994 in Eastern Africa. During the SON season, the 1994 wet event rather than 
1997 is used because in the interannual variability, the skill of the former is bet-
ter as noticed from result in Figure 8. The base period used for calculation of the 
long term mean in all cases is the 13 years from 1989 to 2001. The contouring of 
the precipitation anomalies illustrated in all the panels in Figure 9 has been 
done to show areas of positive and negative precipitation anomalies on the same 
scale. Figure 9(a) shows the observed anomaly and it is found that the flood 
event was concentrated in the Tropical East Africa sector, centered around the 
equator and oriented in a manner that suggests an influence the Indian ocean. 
The area extending southwards into South Africa is dry. Nevertheless, it is im-
portant to remember that during SON period, the southern sector of Eastern 
Africa is normally dry. The forecasts of the 1994 flood event by the SSE, EM, and 
the member models are shown by the series of panels Figures 9(b)-(p). Com-
paring the SSE product with observation, it is noticed that the East Africa preci-
pitation flood event is predicted with good skill in magnitude and spatial extend. 
As found from the comparison of Figures 9(c)-(p) with Figure 9(a), the EM 
and member models performed poorly in forecasting the flood event. The season 
SON during 1994 was a moderate warm ENSO event in the global climate sys-
tem and it is therefore reasonable to associate the skill seen in this result with 
that warm ENSO event. For the season SON, a warm ENSO wet composite can  
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Figure 9. The spatial distribution of precipitation anomalies in East Africa during the 
moderate flood event of September-November (SON) during 1994. (a) Observations, (b) 
S`SE, (c) EM, (d)-(p) Member models 1 to 13. (a) OBS_94; (b) SSE_94; (c) EM_94; (d) 
M01_94; (e) M02_94; (f) M03_94; (g) M04_94; (h) M05_94; (i) M06_94; (j) M07_94; (k) 
M08_94; (l) M09_94; (m) M10_94; (n) M11_94; (o) M12_94; (p) M13_94. 
 
be defined as the average of the 1994 and 1997. The results are similar to those 
shown in Figure 9 and the SSE product emerges as a much forecast for the flood 
conditions in magnitudes and spatial distribution precipitations associated with 
warm ENSO events in Eastern Africa. From Figure 8, it is found that the 1996 
drought that occurred during the SON season was predicted with good skill and 
it is useful to study the spatial distribution of the precipitation anomalies.  

Figure 10 presents the observations and forecasts of the 1996 drought. In 
Figure 10, the season precipitation anomalies have been contoured to show 
areas of drought as those with negative precipitation anomalies and from panel 
(a), it is may be seen that the drought area of interest is the Tropical Eastern  
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Figure 10. The spatial distribution of precipitation anomalies in East Africa during the 
drought event of September-November (SON) during 1996. (a) Observations, (b) SSE, (c) 
EM, (d)-(p) member models 1 to 13. (a) OBS_96; (b) SSE_96; (c) EM_96; (d) M01_96; (e) 
M02_96; (f) M03_96; (g) M04_96; (h) M05_96; (i) M06_96; (j) M07_96; (k) M08_96; (l) 
M09_96; (m) M10_96; (n) M11_96; (o) M12_96; (p) M13_96. 
 
sector of East Africa. The superensemble forecast for the drought is shown in 
panel (b) and it captures the precipitation deficit well in magnitude and spatial 
coverage. The EM and member model forecasts are shown in panels (c) to (p) 
and it is found that none of these simulations compares with observations as fa-
vorably as the SSE product.  

The prediction of the regional scale precipitation gradient that exists within 
Eastern Africa during the December-February (DJF) season is a feature that 
models simulate with huge differences. During the warm ENSO phase, Equa-
torial East Africa tends to receive enhanced precipitation and Southern Africa 
surfers a drought. The pattern is nearly opposite during cold ENSO phase and it 
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is characterized by droughts in Equatorial Eastern Africa and flooding in South-
ern Africa. This regional scale climate feature can be recognized as a seesaw or 
dipole pattern. Additional discussions of the ENSO teleconnection with seasonal 
precipitation over the region may be found in [2] [32] [35] [36] among other 
studies and authors. It is useful to determine how well the superensemble pre-
dicts this regional feature. In Eastern Africa, seasonal forecasts of climate are 
usually done SSTs and ENSO derived statistical relationships with precipitation. 
The statistical models cannot always give forecasts that are physically consistent 
with the large-scale mechanisms such as the atmospheric circulation characteris-
tics and its modulation by regional and local scale processes. In this study, it is 
sufficient to focus on the skill of the SSE relative to the EM in forecasting this 
see-saw pattern in precipitation between Tropical East Africa and Southern Parts 
the larger Eastern Africa. By obtaining the average of the warm ENSO and cold 
ENSO events within the model data sets used in this study, Figure 11 summa-
rizes the predictability of the regional precipitation gradient in which panels (a) 
and (d) show observations for the gradient pattern, panels (b) and (e) illustrate 
predictability by the SSE scheme and panels (c) and (f) show the performance of 
the EM. For the two scenarios, it is found that the multimodel superensemble 
simulates the “see-saw” in precipitation quite consistently with observations and 
outperforms the ensemble mean in getting accurately the magnitudes and spatial 
distribution of the season precipitation. 

Thus, the multimodel superensemble scheme can provide skill and robust re-
sults that are spatially consistent over very large areas, such as seen in these  
 

 
Figure 11. The predictability of the ENSO related dipole pattern of precipitation anoma-
lies during December-February (DJF) season in Eastern Africa. Positive anomalies are al-
so contoured at departures of 0.6 mm/day from long term mean. (a) Observations; (b) 
SSE; (c) EM; (d)-(p) member models 1 to 13. (a) OBSwet; (b) SSEwet; (c) EMwet; (d) 
OBSdry; (e) SSEdry; (f) EMdry. 
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results for the Eastern Africa ENSO precipitation dipole pattern. In global cli-
mate models and also climate forecasts in many parts of Africa, SST anomaly 
patterns have been the most reliable long-range predictors. Accurate predictions 
of SST anomalies including ocean specific modes of variability, for example the 
Indian Ocean dipole mode [37] and ENSO SST anomalies in the equatorial Pa-
cific are crucial for improvement of seasonal climate predictability, especially in 
Eastern Africa. The superesnsemble has been shown to provide accurate predic-
tions of SST anomalies in all the tropical oceans [38]. Therefore, superensemble 
modeling can be used in prediction of all aspects of the climate system, with an 
accuracy that address the spatial and temporal evolution of the climate extremes 
better than anyone climate model. The prediction skill seen in the above results 
for dipole pattern of precipitation the larger Eastern Africa is a confirmation that 
this technique of climate modeling provides a robust means of predicting accu-
rately regional scale climate extremes. Regional scale information of this nature 
and quality is a necessary input in the socio-economic planning and mobiliza-
tion of resources for early warning, long-term advisories and policies actions 
towards addressing of tribal/ethnic conflicts due to climatically driven resources 
in the Arid and Semi-Arid Lands (ASALs), for example fatal conflicts over 
grasslands and watering points between Semi-Nomadic communities living in 
Northern Kenya, Northeastern Uganda, and Southern Ethiopia during drought 
periods due to failure of seasonal rainfall. The construction of a multimodel su-
perensemble forecasts can be the climate modeling solution to climate scientists 
working in Africa provided the worldwide centers with the facilities for conti-
nuous improvements of specific climate models avail the real-time model data 
sets to scientists within Africa. 

5. Conclusions 

A comprehensive data from a suit of 13 global climate models has been used to 
construct superensemble climate forecasts in various regions of Africa. The mul-
timodel superensemble technique that has been developed in Florida State Uni-
versity is used. The approach removes the collective bias of the individual model 
forecasts by assigning weights to each of the member models based on their past 
performance and using those weights in a multiple linear regression to produce a 
consensus forecast for the variable of interest. In this study, the main objective is 
predictability of seasonal precipitation over various regions of Africa, and the 
potential improvements that can be achieved by using the superensemble rela-
tive the skill attributes of the individual models and multimodel ensemble mean 
were the only forecast schemes available. 

In the study, Eastern Africa is taken as a region of detailed analysis. In Eastern 
Africa, the interannual variability of precipitation during some seasons is strongly 
associated with the global ocean SSTs and ENSO phenomenon, and often leads 
to heavy rainfall floods in Tropical Eastern Africa and drought conditions in 
South-eastern Africa during warm ENSO phases and the pattern reverses during 
the cold ENSO phase. This may be viewed as a see-saw of climate-stress across 
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the larger Eastern African and it has far reaching socio-economic implications 
on communities who are generally very poor and depend on rain-fed agriculture 
and agro-pastoral activities for food production. Improvements of prediction of 
seasonal climate anomalies that affect such huge areas is therefore a matter of 
priority in many parts of Africa. 

The results have shown that even though the individual climate models and 
the ensemble mean simulate the basic annual and seasonal cycles of precipita-
tion, the magnitudes and spatial distribution compare poorly with observations. 
In the simulation of the seasonal cycle of precipitation in the various regions of 
Africa, the superensemble product is found to be closest to the observed clima-
tology, while the member models and ensemble mean simulations show big de-
partures from observations. For the East Africa region, the superensemble may 
be said to provide an improvement of 18% above the multimodelensemble mean 
during the seasons March-May (MAM), June-August (JJA), September-November 
(SON), and December-February (DJF). During the DJF season, a regional scale 
north-south gradient of precipitation prevails between Tropical East Africa and 
South-eastern Africa. This regional scale climate pattern is a direct influence of 
the intertropical convergence zone (ITZC) across the African continent during 
this time of the year. The superensemble emerges as best among the member 
models and ensemble mean in the simulation of the north-south gradient of 
precipitation in the region. 

When applied on a seasonal basis in various regions of Africa, the superen-
semble gave precipitation forecasts that outperformed the member models and 
ensemble mean in skill scores. For example, in the July-September (JAS) preci-
pitation in North Africa during 1989, the ensemble mean root mean square error 
(RMSE) was 1.5 mm/day, while the superensemble error was only 0.5 mm/day. 
In the region, the superensemble may be viewed as improving the performance 
of the ensemble mean by 67%. It is also found that in all the four regions of 
Africa, the RMSE of the superensemble product is lower, and different from the 
ensemble mean at more than 95% significance level. A lower RMSE indicates a 
superior performance. 

The multimodel superensemble provides seasonal precipitation forecast over 
Eastern Africa that is consistent with all the salient features in the regional pre-
cipitation extremes associated with warm and cold ENSO phases in the region. 
However, the scheme did not pick the entire magnitude of the 1997 floods in 
East Africa, which were associated with the 1997/98 El Niño. This may have 
been due to the short length of multimodel archive data sets that were available 
to this particular study and the results would come out much better with use of 
model data sets of at least 30 year climatological period. However, the superen-
semble provides the best prediction of the spatial distribution of precipitation 
that characterizes the north-south dipole consisting of wetter than normal con-
ditions in Tropical Eastern Africa and drought stricken Southern Africa during 
warm ENSO phases. This precipitation anomaly pattern reverses during the cold 
ENSO phase and it is therefore a regional scale climate feature. Even for the re-
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versed ENSO scenario, the superensemble forecasts stands with skill characteris-
tics superior to those of the individual models and ensemble mean. The multi-
model superensemble approach is therefore an innovative scheme for the pre-
diction of regional scale climate extremes over the diverse regions of Africa. 

When real time forecasts are made with several climate models, it is difficult 
to know in advance which among these models can be relied upon to give the 
most skilful climate forecast for the season and region of interest. It will help a 
lot if climatological hindcasts of global climate models are generated and arc-
hived for longer periods. However, knowing that the superensemble has the 
highest skills always as illustrated in this study, it would be safer to rely on the 
superensemble in seasonal forecasts and for future projections of climate. 

The multimodel superensemble should be useful for real time climate fore-
casts over continental Africa and the surrounding ocean basins and future im-
provements are certain from the advancement of physical climate modeling and 
more accurate observational analysis fields. 

This approach and results herein imply that climate services centres world-
wide and Africa in particular can make more objective use of model forecast da-
ta sets, which is increasingly being freely availed by global producing centres 
(GPCs) for better quality and more objective regional climate services, especially 
over the sub-regions of Africa and even better processing of current climate 
change data sets being availed by projects like CMIP6 models. 

Acknowledgements 

Thanks to weather services and climate institutions round the world for making 
available various versions of their global model data sets in support of dynam-
ical modeling and prediction research in Kenya and Africa in general. I am 
grateful to conducive scholarly environment provided by the University of Nai-
robi-Kenya. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Goddard, L. and Graham, E. (1999) The Importance of the Indian Ocean for Simu-

lating Rainfall Anomalies over Eastern and Southern Africa. Journal of Geophysical 
Research: Atmospheres, 104, 19099-19116. https://doi.org/10.1029/1999JD900326 

[2] Mutemi, J.N. (2003) Climate Anomalies over Eastern Africa Associated with Vari-
ous ENSO Evolution Phases. PhD Thesis, University of Nairobi, Nairobi. 

[3] Karanja, F.K., Oludhe, C., Mutua, F.M. and Nyakwanda, W. (2000) Reducing the 
Impacts of Environmental Emergencies through Early Warning and Preparedness: 
The Case of El Niñ-Southern Oscillation (ENSO). Report of UNFIP/UNEP/NCAR/ 
WMO/DNDR/UNU. 

[4] Indeje, M., Semazzi, F.H.M. and Ogallo, L.J. (2000) ENSO Signals in East African 

https://doi.org/10.4236/acs.2019.94038
https://doi.org/10.1029/1999JD900326


J. N. Mutemi 
 

 

DOI: 10.4236/acs.2019.94038 622 Atmospheric and Climate Sciences 
 

Rainfall and Their Prediction Potentials. International Journal of Climatology, 20, 
19-46. 
https://doi.org/10.1002/(SICI)1097-0088(200001)20:1<19::AID-JOC449>3.0.CO;2-0 

[5] Ogallo, L.J. (1988) Relationship between Seasonal Rainfall in East Africa and the 
Southern Oscillation. Journal of Climatology, 8, 31-43.  
https://doi.org/10.1002/joc.3370080104 

[6] Gates, W.L., Boyle, J.S., Covey, C., Dease, C.G., Doutriaux, C.M., Drach, R.S., Fi-
orino, M., Gleckler, P.J., Hnilo, J.J., Marlais, S.M., Phillips, T.J., Potter, G.L., Santer, 
B.D., Sperber, K.R., Taylor, K.E. and Williams, D.N. (1999) An Overview of the Re-
sults of the Atmospheric Model Intercomparison Project (AMIP I). Bulletin of the 
American Meteorological Society, 80, 29-55.  
https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2 

[7] Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., 
Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R.J., Sumi, A. and Taylor, K.E. (2007) 
Climate Models and Their Evaluation. In: Solomon, S., Qin, D., Manning, M., Chen, 
Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L., Eds., Climate Change 
2007: The Physical Science Basis. Contribution of Working Group I to the Fourth 
Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge 
University Press, Cambridge, United Kingdom and New York. 

[8] Krishnamurti, T.N., Kishtawal, C.M., LaRow, T.E., Bachiochi, D.R., Zhang, Z., Wil-
liford, C.E., Gadgil, S. and Surendran, S. (1999) Improved Weather and Daily and 
Medium Range Climate Forecasts from Multi-Model Superensemble. Science, 285, 
1548-1550. https://doi.org/10.1126/science.285.5433.1548 

[9] Graham, R.J., Evans, A.D.L., Mylne, K.R., Harrison, M.S.J. and Robertson, K.B. 
(2000) An Assessment of Seasonal Predictability Using Atmospheric General Cir-
culation Models. Quarterly Journal of the Royal Meteorological Society, 126, 2211- 
2240. 

[10] Palmer, T.N., Alessandri, A., Andersen, U., Cantelaube, P. and Davey, M. (2004) 
Development of a European Multi-Model Ensemble System for Seasonal to In-
ter-Annual Prediction (DEMETER). Bulletin of the American Meteorological So-
ciety, 85, 853-872. https://doi.org/10.1175/BAMS-85-6-853 

[11] Doblas-Reyes, F.J., Hagedorn, R. and Palmer, T.N. (2005) The Rationale behind the 
Success of Multi-Model Ensembles in Seasonal Forecasting-II. Calibration and 
Combination. Tellus A, 57, 234-252.  
https://doi.org/10.1111/j.1600-0870.2005.00104.x 

[12] Krishnamurti, T.N., Kishtawal, C.M., Shin, D.W. and Williford, C.E. (2000) Multi-
model Ensemble Forecasts for Weather and Seasonal Climate. Journal of Climate, 
13, 4196-44216.  
https://doi.org/10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2 

[13] Chaves, R.R., Ross, R.S. and Krishnamurti, T.N. (2005) Weather and Climate Pre-
diction for South America Using a Multi-Model Superensemble. International 
Journal of Climatology, 25, 1881-1914. https://doi.org/10.1002/joc.1230 

[14] Mutemi, J.N., Ogallo, L.A., Krishnamurti, T.N., Mishra, A.K. and Kumar, T.S.V.V. 
(2007) Multimodel Based Superensemble Forecasts for Short and Medium Range 
NWP over Various Regions of Africa. Meteorology and Atmospheric Physics, 95, 
87-113. https://doi.org/10.1007/s00703-006-0187-6 

[15] Yun, W.T., Stefanova, L., Mitra, A.K., Kumar, T.S.V.V., Dewar, W. and Krishna-
murti, T.N. (2005) A Multi-Model Superensemble Algorithm for Seasonal Climate 
Prediction Using DEMETER Forecasts. Tellus A, 57, 280-289.  
https://doi.org/10.1111/j.1600-0870.2005.00131.x 

https://doi.org/10.4236/acs.2019.94038
https://doi.org/10.1002/(SICI)1097-0088(200001)20:1%3C19::AID-JOC449%3E3.0.CO;2-0
https://doi.org/10.1002/joc.3370080104
https://doi.org/10.1175/1520-0477(1999)080%3C0029:AOOTRO%3E2.0.CO;2
https://doi.org/10.1126/science.285.5433.1548
https://doi.org/10.1175/BAMS-85-6-853
https://doi.org/10.1111/j.1600-0870.2005.00104.x
https://doi.org/10.1175/1520-0442(2000)013%3C4196:MEFFWA%3E2.0.CO;2
https://doi.org/10.1002/joc.1230
https://doi.org/10.1007/s00703-006-0187-6
https://doi.org/10.1111/j.1600-0870.2005.00131.x


J. N. Mutemi 
 

 

DOI: 10.4236/acs.2019.94038 623 Atmospheric and Climate Sciences 
 

[16] Yun, W.T., Stefanova, L. and Krishnamurti, T.N. (2003) Improvement of the Supe-
rensemble Technique for Seasonal Forecasts. Journal of Climate, 16, 3834-3840. 
https://doi.org/10.1175/1520-0442(2003)016<3834:IOTMST>2.0.CO;2 

[17] Lakeman, J.A. (1995) Climate Change 1995: The Science of Climate Change. Cam-
bridge University Press, Cambridge, 233-276. 

[18] Krishnamurti, T.N., Bedi, H.S. and Hardiker, V.M. (1998) An Introduction to 
Global Spectral Modeling. Oxford University Press, New York, 253 p. 

[19] Latif, M. (1987) Tropical Ocean Circulation Experiments. Journal of Physical Ocea-
nography, 17, 246-263.  
https://doi.org/10.1175/1520-0485(1987)017<0246:TOCE>2.0.CO;2 

[20] Krishnamurti, T.N. and Bedi, H.S. (1983) Cumulus Parameterization and Rainfall 
Rates: Part III. Monthly Weather Review, 116, 583-599. 
https://doi.org/10.1175/1520-0493(1988)116<0583:CPARRP>2.0.CO;2 

[21] Grell, G.A. (1993) Prognostic Evaluation of Assumptions Used by Cumulus Para-
meterizations. Monthly Weather Review, 121, 764-787. 
https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2 

[22] Chang, C.B. (1979) On the Influence of Solar Radiation and Diurnal Variation of 
Surface Temperatures on African Disturbances. Florida State University, Tallahas-
see, FL. 

[23] Lacis, A.A. and Hansen, J.E. (1974) A Parameterization for the Absorption of Solar 
Radiation in the Earth’s Atmosphere. Journal of the Atmospheric Sciences, 31, 
118-133. https://doi.org/10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2 

[24] Kiehl, J.T., Hack, J.J., Bonan, G.B., Boville, B.A., Williamson, D.L. and Rasch, P.J. 
(1998) The National Center for Atmospheric Research Community Climate Model: 
CCM3. Journal of Climate, 11, 1131-1149.  
https://doi.org/10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2 

[25] Kållberg, P., Berrisford, P., Hoskins, B., Simmons, A., Uppala, S., Lamy-Thépaut, S. 
and Hine, R. (2005) ERA-40 Project Report Series. ERA-40 Atlas. ECMWF ERA-40 
Project Report Series. Shinfield Park, Reading, England. 

[26] Hagedorn, R., Doblas-Reyes, F.J. and Palmer, T.N. (2005) The Rationale behind the 
Success of Multi-Model Ensembles in Seasonal Forecasting. Basic Concept. Tellus 
A, 57, 219-233. https://doi.org/10.1111/j.1600-0870.2005.00103.x 

[27] Xie, P. and Arkin, P.A. (1997) Analysis of Global Monthly Precipitation Using 
Gauge Observations, Satellite Estimates, and Numerical Model Prediction. Journal 
of Climate, 9, 840-858.  
https://doi.org/10.1175/1520-0442(1996)009<0840:AOGMPU>2.0.CO;2 

[28] Krishnamurti, T.N., Surendran, S., Shin, D.W., Correa-Torres, R.J., Kumar, T.S.V.V., 
Williford, E., Kummerow, C., Adler, R.F., Simpson, J., Kakar, R., Olson, W.S. and 
Turk, F.J. (2001) Real-Time Multianalysis-Multimodel Superensemble Forecasts of 
Precipitation Using TRMM and SSM/I Products. Monthly Weather Review, 129, 
2861-2883. https://doi.org/10.1175/1520-0493(2001)129<2861:rtmmsf>2.0.co;2  

[29] Dẻquẻ, M. (1997) Ensemble Size for Numerical Seasonal Forecasts. Tellus A, 49, 
74-86. https://doi.org/10.1034/j.1600-0870.1997.00005.x 

[30] Wilks, D.S. (1995) Statistical Methods in the Atmospheric Sciences. Academic 
Press, New York, 467 p. 

[31] Ross, R.S. and Krishnamurti, T.N. (2005) Reduction of Forecast Error for Global 
Numerical Weather Prediction by the Florida State University (FSU) Superensem-
ble. Meteorology and Atmospheric Physics, 88, 215-235.  
https://doi.org/10.1007/s00703-004-0077-8 

https://doi.org/10.4236/acs.2019.94038
https://doi.org/10.1175/1520-0442(2003)016%3C3834:IOTMST%3E2.0.CO;2
https://doi.org/10.1175/1520-0485(1987)017%3C0246:TOCE%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1988)116%3C0583:CPARRP%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1993)121%3C0764:PEOAUB%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1974)031%3C0118:APFTAO%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011%3C1131:TNCFAR%3E2.0.CO;2
https://doi.org/10.1111/j.1600-0870.2005.00103.x
https://doi.org/10.1175/1520-0442(1996)009%3C0840:AOGMPU%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129%3C2861:RTMMSF%3E2.0.CO;2
https://doi.org/10.1034/j.1600-0870.1997.00005.x
https://doi.org/10.1007/s00703-004-0077-8


J. N. Mutemi 
 

 

DOI: 10.4236/acs.2019.94038 624 Atmospheric and Climate Sciences 
 

[32] Ogallo, L.J. (1989) The Spatial and Temporal Patterns of the East African Seasonal 
Rainfall Derived from the Principal Component Analysis. International Journal of 
Climatology, 9, 145-167. https://doi.org/10.1002/joc.3370090204 

[33] Krishnamurti, T.N. (1979) Tropical Meteorology. Compendium of Meteorology, 
Part 4, WMO Publication, Geneva, 428 p. 

[34] Asnani, G.C. (1993) Tropical Meteorology. Sindh Colony, Aundh, Pune, India, 603 p. 

[35] Nicholson, S.E. (2017) Climate and Climatic Variability of Rainfall over Eastern 
Africa. Reviews of Geophysics, 55, 590-635. https://doi.org/10.1002/2016RG000544  

[36] Ropelewski, C.F. and Halpert, M.S. (1987) Global and Regional Scale Precipitation 
Patterns Associated with the El-Nino/Southern Oscillation. Monthly Weather Re-
view 115, 1606-1626.  
https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2 

[37] Saji, N.H., Goswami, B.N., Vinayachandran, P.N. and Yamagata, T. (1999) A Dipole 
Mode in the Tropical Indian Ocean. Nature, 401, 360-363. 
https://doi.org/10.1038/43854 

[38] Krishnamurti, T.N., Mitra, A.K., Kumar, T.S.V.V., Yun, W.T. and Dewar, W.K. 
(2006) Seasonal Climate Forecasts of the South Asian Monsoon Using Multiple 
Coupled Models. Tellus A, 58, 487-507.  
https://doi.org/10.1111/j.1600-0870.2006.00184.x 

 

https://doi.org/10.4236/acs.2019.94038
https://doi.org/10.1002/joc.3370090204
https://doi.org/10.1002/2016RG000544
https://doi.org/10.1175/1520-0493(1987)115%3C1606:GARSPP%3E2.0.CO;2
https://doi.org/10.1038/43854
https://doi.org/10.1111/j.1600-0870.2006.00184.x


J. N. Mutemi 
 

 

DOI: 10.4236/acs.2019.94038 625 Atmospheric and Climate Sciences 
 

Appendix 

The root mean square error (RMSE) is given by: 
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where: 
N = number of grid points 
fn = forecast value at grid point n 
on =observed value at grind point n 
Student’s t-test 
The significance level at which the RMSE of the superensemble is superior to 

that of the ensemble mean is expressed as a percentage and indicated at the top 
of each panel for each year of forecast in Figure 5 and Figure 6. The student’s 
t-test used is: 
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where Sd is the standard deviation of the RMSEs within an ensemble of n mem-
bers. 
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