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ABSTRACT 

Artificial neural networks (ANN) are employed using different combinations among the surface friction velocity u*, 
surface buoyancy flux Bs, free-flow stability N, Coriolis parameter f, and surface roughness length z0 from large-eddy 
simulation data as inputs to investigate which variables are essential in determining the stable boundary layer (SBL) 
height h. In addition, the performances of several conventional linear SBL height parameterizations are evaluated. ANN 
results indicate that the surface friction velocity u* is the most predominant variable in the estimation of SBL height h. 
When u* is absent, the secondly important variable is the surface buoyancy flux Bs. The relevance of N, f, and z0 to h is 
also discussed; f affects more than N does, and z0 shows to be the most insensitive variable to h. 
 
Keywords: Artificial Neural Network; Large-Eddy Simulation; Stable Boundary Layer Height 

1. Introduction 

Parameterizations of the stable boundary layer (SBL) 
height are often critical in many practical problems, such 
as air pollutant dispersion modeling [1-3], weather mod- 
eling, and climate modeling. Due to the complex rela- 
tionship between the mean profiles and the turbulence in 
the stable boundary layer [4,5], it is less straightforward 
to determine the SBL height from wind speed and tem- 
perature profiles compared to observing the convective 
boundary layer height from mean profiles. During recent 
several decades, a number of model formulations of SBL 
depth have been developed based on various datasets 
[6-11]; these formulations are mainly in forms of linear 
equations or complex non-linear multi-limit equations. 
Most of these schemes are surface flux-dominated mod- 
els; they are summarized by Zilitinkevich et al. [11].  

Various linear relationships [6-8] were formulated by 
considering the SBL height relying on one or two vari- 
ables among the earth’s rotation (f), surface friction ve- 
locity (u*), surface buoyancy flux (Bs), and free-flow 
stability (N) which have been identified as the key physi- 
cal processes that govern the SBL height. However, no 
consensus was achieved from these linear models. 

By employing the turbulent kinetic energy (TKE) 
budget equation, Zilitinkevich and Mironov [10] derived 
two diagnostic multi-limit equations for the equilibrium 
depth of SBL that contains all the four aforementioned 

variables and several unknown coefficients, and that can 
hold in both the general case and the limiting cases. Fur- 
thermore, Zilitinkevich et al. [11] proposed two refined Ek- 
man-layer height equations from the momentum balance 
equations and validated their model against observations.  

The above parameterizations of SBL height have been 
evaluated by many researchers based on various observa- 
tional datasets [11-14] and controlled numerical simula- 
tions [15-17]. Using datasets over grassland, cooler 
ocean surface and snow cover, Vickers and Mahrt [13] 
evaluated a variety of surface flux-based SBL height 
formulations; they summarized that the existing formula- 
tions generally perform poorly and often overestimate the 
depth of SBL.  

The aforementioned multi-limit equations were further 
discussed and evaluated by Zilitinkevich and Baklanov 
[12]; they found that the Ekman-layer height equations 
by Zilitinkevich et al. [11] produced more accurate esti- 
mation of SBL height than that by the equations in Zilit- 
inkevich and Mironov [10]. Kosovic and Lundquist [17] 
compared several parameterizations to calculate SBL 
height using large-eddy simulations of moderately stable 
boundary layers and they demonstrated that the gravity 
waves in the free atmosphere do affect the height of SBL.  

Steeneveld et al. [14] evaluated the performance of the 
Zilitinkevich and Mironov [10] multi-limit equations 
against four observational datasets over different terrains; 
they found that the multi-limit equations underestimate  
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the SBL height, especially for shallow boundary layers, 
and no unique parameter that sets for these equations can 
be determined. Alternatively, Steeneveld et al. [14] devel- 
oped a formulation based on formal dimensional analysis 
using the same quantities as in the multi-limit equations; 
this new formulation showed to be more robust and it sig- 
nificantly reduced the model bias for shallow boundary 
layer heights compared with the multi-limit equations, 
and a unique parameter set was found for this new equa- 
tion. Furthermore, Steeneveld et al. [18] proposed an- 
other alternative equation by an inverse interpolation of 
the eddy diffusivities for each boundary layer prototype 
[16] instead of interpolating the height scales for each 
prototype in the equations by Zilitinkevich and cowork- 
ers when applying the definition of Ekman layer depth. 
This equation reduced the bias of the predicted SBL 
height compared to their equations. However, the formu- 
lation derived from formal dimensional analysis [14] still 
shows better performance than this equation [18]. 

Therefore, the above studies have enlightened us that 
some formulations which involve less variables can per- 
form better than the complex multi-limit formulations for 
the SBL height estimation. In this paper, we will take an 
unconventional approach to figure out which variables 
are indeed essential for an optimum representation of the 
SBL height. Artificial neural networks will be employed 
to model this non-linear phenomenon based on a large- 
eddy simulation output dataset. 

2. Data Description 

The data used in this study are the output from 68 runs of 
large eddy simulation (LES). They are idealized simula- 
tions, by setting different values for the parameters of 
geostrophic wind G, cooling rate C of air temperature, 
surface roughness length z0, initial boundary layer height 
H, Brunt-Vaisala frequency N in the free atmosphere 
above the SBL, and Coriolis parameter f, to represent 
typical low-level jet scenarios in the stable boundary 
layer. 

The LES computational domain employed for this 
study extends 800 meters in the lateral direction and 795 
meters in the vertical direction. The grid size in both y 
and z directions is 10 meters; at each grid point, the three 
dimensional wind velocity and air temperature are gen- 
erated as a time series; the time step for the LES flow 
fields is 0.1 sec [19]. The 5-min mean values of the simu- 
lated data are output for the boundary layer height studies. 
From each LES run, a total of 144 time steps are ob- 
tained representing 12 hours of simulation between 1800 
to 0600 LST. 

Each simulation starts from a neutral profile. As 
shown by the wind profiles, the damping layer of wind 
speed starts from 550-m level around, we only use the 

data from the surface to 550-m height to analyze the sta- 
ble boundary height. 

There have been many definitions of SBL height with 
different emphasis on properties of turbulence [20], heat 
flux [21], mean wind speed [22], mean temperature [23], 
and other effects [16,24,25]. In this study, we will em- 
ploy the definition of the height of the lowest maximum 
of the wind speed [22,26], often referred to as the low- 
level jet height, as the targeted SBL height h in the para- 
meterization. The LES wind profiles show that low-level 
jets usually start developing after 0000 LST. Therefore, 
only the data between 0000 - 0600 LST in each simula- 
tion are selected to represent typical low-level jets. 

3. Resampling Strategy 

In this study, at each time step in each LES run, from the 
wind speed profile, a SBL height h can be estimated as 
the height of the maximum wind speed, i.e., the low-level 
jet height. Thus from each simulation there are totally 72 
output values of 6 hours for surface friction velocity u*, 
surface buoyancy flux Bs, and boundary layer height h. 
The geostrophic wind G, the Coriolis parameter f, the 
Brunt-Vaisala frequency N in the free atmosphere, and 
the surface roughness length z0 are set as various values 
for each LES run. 

We will firstly combine the data from all the 68 LES 
sruns together to form a total dataset, and then apply re- 
peated random sub-sampling cross-validation algorithm, 
to evaluate five conventional linear formulations of sta- 
ble boundary layer height. This method randomly parti- 
tions the dataset into training and validation data by a 
certain percentage (60% training and 40% validation in 
this study). For each such split, the model is fit to the 
training data, and assesses the predictive accuracy using 
the validation data. This procedure is repeated for 100 
times in this study. 

The variables from the training data are used in the 
conventional linear formulations to calculate their in- 
cluded constants first. Then substituting the variables in 
the validation data, together with the derived constants 
into the linear equations, the SBL height h can be pre- 
dicted. Consequently based on the difference between the 
predicted and the targeted values of h, the statistical 
quantities such as root mean squared error (RMSE), me- 
dian absolute error (MAE), median bias error (MBE), 
and index of agreement (IOA) are calculated. Therefore 
the performance of these linear formulations can be evalu- 
ated from the distribution of the statistical errors. 

4. Performance of Conventional SBL  
Height Parameterizations Based on  
LES Data 

Most conventional formulations for the equilibrium 
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depth of the stably stratified boundary layer are surface- 
flux-dominated formulations. In these parameterizations, 
the turbulent heat flux and momentum flux at the surface 
are required to be estimated. Rossby and Montgomery 
[27] proposed that the surface friction velocity u* and 
Coriolis parameter f mainly affect the stable boundary 
layer depth: 

 
*
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Kitaigorodskii [6] proposed that only the surface heat 
flux and momentum flux are dominated on the depth of 
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When only considering surface momentum flux and 
the overlying free-flow stratification, Kitaigorodskii and 
Joffre [9] obtained 

Then Zilitinkevich [7] considered the surface heat flux 
together with the influences of surface friction and the 
earth’s rotation such that 
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In this study, we evaluate the performance of the 
above five parameterizations against controlled large 
eddy simulation output. Figure 1 shows the statistical 
errors of RMSE, MAE, MBE, and IOA between the pre- 
dicted and the target values of stable boundary layer 

where Bs is the surface buoyancy flux. Pollard et al. [8] 
were the first to suggest that N, the free-flow stratifica- 
tion above the stable boundary layer, would affect the 
boundary layer height: 
 

 

Figure 1. Performance of conventional linear parameterizations.   
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height h based on these five formulations. 

The formulation by Rossby and Montgomery [27] 
when only considering influences of u* and f shows the 
best performance with minimum values of RMSE (25 m) 
and MAE (18 m) among others. The Pollard et al. [8] 
scheme performs secondly best with a RMSE of 30 m 
and a MAE of 20 m when N is taken into account. Then 
Zilitinkevich [7] formulation has slightly larger RMSE 
than that by Pollard et al. [8] when N is replaced by Bs. 
When f is not involved in the formulations [Equations (4) 
and (5)], the models biases are largely increased with 
Equation (4) being the worst case. 

Therefore, the performance of these conventional lin- 
ear parameterizations of SBL height against LES data 
indicates that the surface friction velocity u* and Coriolis 
parameter f are proved to be the two most predominant 
variables to determine h and the free-flow stability N 
shows more important than the surface buoyancy flux Bs. 

5. Artificial Neural Networks 

Artificial neural networks (ANN) are composed of sim- 
ple interconnected neurons. Unlike other statistical tech- 
niques, ANN usually makes no prior assumptions re- 
garding the data distribution, and can model extremely 
non-linear relationships and be trained to be accurately 
representative for new and unseen data [28]. Typically, a 
neural network can be trained based on a comparison 
between the output and the target until the network out- 
put matches the target, so that a particular input leads to a 
specific target output. 

Artificial neural networks have been applied to per- 
form complex functions in various fields. In recent years, 
a significant number of ANN applications have been 
developed in different fields of geosciences such as satel- 
lite remote sensing, meteorology, oceanography, numeri- 
cal weather prediction, and climate studies [29]. 

The work flow for the general neural network design 
process has the following three primary steps: 

5.1. Collect and Prepare the Data 

After the sample data have been collected, they need to 
be preprocessed and to be divided into three subsets be- 
fore they are used to train the network. The first subset is 
the training set, which is used for computing the gradient 
and updating the network weights and biases. The second 
subset is the validation data which will determine the 
stopping criteria. The error on the validation set is moni- 
tored during the training process. The validation error 
normally decreases during the initial phase of training, as 
does the training set error. However, when the network 
begins to over fit the data, the validation error typically 
begins to rise after some iterations. The network weights 
and biases are saved when the validation error reaches 

the minimum at the certain iteration, which gives the 
optimum iteration number for the network training. The 
third subset in the data is the testing data, the error on 
which is not used during the training process, but used to 
compare different models. Typically, a poor division of 
the dataset happens when the testing error reaches a 
minimum at a significantly different iteration number 
from that at which the validation error reaches its mini- 
mum.  

5.2. Create, Configure and Initialize the Network 

After the data have been prepared, the next step is to se- 
lect the network architecture and create the network. In 
this paper, the most predominant network architecture of 
multilayer perceptron is utilized to map the relationships 
between the stable boundary layer height h and the asso- 
ciated variables u*, Bs, N, f, and z0. We create a two-layer 
feedforward network (see Figure 2). The sum of the 
weighted inputs and the bias forms the input to the trans- 
fer function in the network; then the transfer function 
generates the output vector [28,30]. Multilayer networks 
often use the log-sigmoid transfer function. 

After configuring the network object and also initial- 
izing the weights and biases of the network, the network 
is ready for training. 

5.3. Train and Validate the Network 

The process of training a neural network involves ad- 
justing the values of the weights and biases of the net- 
work to optimize the network performance, that is, to 
find the combination of weights which can result in the 
smallest error [28]. The default performance function for 
feedforward networks is the mean square error (MSE) 
between the network outputs and the targets. 

Gradient descent is the simplest optimization algo- 
rithm; the gradient is calculated using the technique of 
 

 

Figure 2. Illustration of the ANN architecture for modeling 
stable boundary layer height. 
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back propagation algorithm, which involves performing 
computations backward through the network and is the 
most computationally straightforward algorithm for train- 
ing the multilayer perceptron [28,31]. The gradient de- 
scent algorithm updates the network weights and biases 
in the direction in which the performance function de- 
creases most rapidly. 

Once the training procedure is complete, the network 
validation can be done by checking the training record 
and creating a regression plot between the outputs of the 
network and the targets. 

6. ANN Modeling Strategy of Stable  
Boundary Layer Height 

In this study, we will apply ANN to predict the stable 
boundary layer height. ANN development for simulating 
the SBL height requires identification of the input and 
output variables. From the knowledge of conventional 
parameterizations, the SBL height h can be expressed as 
a function of surface friction velocity u*, surface buoy- 
ancy flux Bs, Brunt-Vaisala frequency N in the free at- 
mosphere above the SBL, Coriolis parameter f, and sur- 
face roughness length z0. 

Figure 2 shows the illustration of the two-layer per- 
ceptron ANN architecture in modeling the SBL height h. 
The architecture of the network depends on the number 
of input and output variables. For the present problem, 
the number of input nodes in the two-layer perceptron 
network varies from the minimum of 1 to the maximum 
of 5; the input variables are randomly combined among 
the five associated variables u*, Bs, N, f, and z0. Table 1 
shows the 31 variable combinations of inputs used in the 
network. Only one output node exists in this problem. 

However, the number of nodes in the hidden layer is 
not fixed. For each combination of input variables, we 
test the network by changing the neuron number in the 
hidden layer from 1 to 20 in turn to find a best number of 
hidden nodes. At each specific hidden nodes number, the 
network is repeated to run 100 times to calculate a statis- 
tical median value of the errors. For each run, the dataset 
are randomly partitioned into three subsets of training, 
validation, and testing data with the proportion of 30%, 
30%, and 40%, respectively. 

ANNs are developed using MATLAB Neural Network 
Toolbox (version 2010). The back propagation algorithm 
is applied for training. The training is performed using 
the default values for the parameters of the network. 

7. Performance of ANN-Based  
Parameterizations Based on LES Data 

From previous studies, the basic variables that govern the 
SBL height h are the surface friction velocity u*, the sur- 
face buoyancy flux Bs, the free-flow stability N, the  

Table 1. Input variable combinations in ANN modeling. 

Combination #      u*     Bs       N       f      z0 

31              √      √        √      √      √ 

30              √      √        √      √ 

29              √      √        √             √ 

28              √      √        √ 

27              √      √               √      √ 

26              √      √               √ 

25              √      √                      √ 

24              √      √ 

23              √                √      √     √ 

22              √                √      √ 

21              √                √            √ 

20              √                √ 

19              √                       √      √ 

18              √                       √ 

17              √                             √ 

16              √ 

15                     √        √      √      √ 

14                     √        √      √ 

13                     √        √             √ 

12                     √        √ 

11                     √               √      √ 

10                     √               √ 

9                      √                      √ 

8                      √ 

7                                √      √      √ 

6                                √      √ 

5                                √             √ 

4                                √ 

3                                       √      √ 

2                                       √ 

1                                              √ 

 
Coriolis parameter f, and the surface roughness length z0. 
In this study, these five variables u*, Bs, N, f, and z0 were 
randomly combined into 31 different combinations of 
inputs for the neural network in the order of binary num- 
bers (see Table 1) to investigate which combination of 
variables is the optimum input in determining the stable  
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boundary layer height h. Figure 3 shows the statistical 
errors of RMSE, MAE, MBE, and IOA calculated be- 
tween the output value and the target value of SBL 
height h in the network based on the 31 input combina- 
tions utilizing the LES output data.  

We divided the 31 combinations into 4 groups. From 
the first group of combinations (combination number 1 to 
7 in Table 1) where the variables u* and Bs are not in- 
volved in the input, the model performance is very poor. 
The values of RMSE are as high as 75 m; all the IOA 
values are lower than 0.3. 

In the second group of combinations (combination 
number 8 to 15 in Table 1), when the surface buoyancy 
flux Bs are included in the model input, the RMSE de- 
crease to be around 50 m, the IOA are largely increased 
up to 0.9. This indicates that buoyancy flux is a very im- 
portant variable in predicting h when friction velocity is 
absent in the input. 

When the third (combination number 16 to 23 in Ta- 
ble 1) and the fourth (number 24 to 31) groups of com- 
binations are input into the network, where the surface 
friction velocity u* is involved in each input, the model 
performance is largely improved again to be the best 

among all the variable combinations of input. The RMSE 
are very close to each other based on these 16 set of in- 
puts, with a mean value of 20 m, and their IOA reach to 
be as high as 0.98. This strongly proves that the surface 
friction velocity u* is the most dominant variable in de- 
termining the SBL height. 

From the second group to the fourth group of variable 
combinations, keeping the way of combining other three 
variables (N, f, z0) as that in the first group, when adding 
u* with Bs in the input variables, the model performance 
is largely improved. From the second group to the third 
group, when Bs is replaced by u* in the input, the model 
performance is largely improved similarly. This indicates 
that the variable Bs has less relevance compared to u* in 
predicting h, even if Bs has been proved to be an impor- 
tant one. This can also be verified from that when chang- 
ing the input combinations from the fourth group to the 
third group, where Bs is removed from the variable com- 
binations, the model performance is not changed obvi- 
ously. 

The median RMSE based on the variable combination 
of (u*, Bs, N, f, z0) is the minimum of the RMSE values 
based on all combinations. This means that when all the 

 

 

Figure 3. Performance of ANN-based parameterizations using 31 different variable combinations as inputs.   
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five relevant variables u*, Bs, N, f, and z0 are taken into 
account in the model input, the model performs best. 

In addition, within the third and fourth groups, when 
the coriolis parameter f is added into the combinations, 
the RMSE values are decreased; when replacing f by N in 
the combinations, RMSE are increased; when f and N are 
both involved, the RMSE values are decreased again. 
Therefore, the coriolis parameter f shows to be more im- 
portant for h prediction compared to the inversion 
strength N. 

In further details, within both the third group and the 
fourth group, the values of RMSE are changing in pairs. 
The two median RMSE values of each pair are almost 
equal; the difference between the two input variable 
combinations within each pair is that the surface rough- 
ness length z0 is included or not. This demonstrates that 
the surface roughness length z0 is not obviously affective 
to h determination. 

Overall, our results based on ANN shows that the 
strongest relation of h exists with u*, and then with Bs 
secondly. Koracin and Berkowicz [32] ever proposed a 
simple empirical estimate of h = 700u*. This formula 
was evaluated by Steeneveld et al. [14] by observational 
data and it performs well over their datasets. In the alter- 
native formulation using dimensional analysis by Steen- 
eveld et al. [14], they also concluded that h relies on u* 
most strongly, and then on Bs in the very stable limit, 
then on N while f and z0 are less relevant for their data; 
when the Coriolis parameter f is omitted, the SBL height 
h for moderately stable conditions is proportional to u*/N, 
and for high stability conditions h is proportional to the 
length scale 3

SB N . 
Kosovic and Lundquist [17] also used LES study to 

explore various parameterizations of SBL height. They 
found that from a small-domain simulation, the SBL 
height formulation proposed by Kosovic and Curry [15] 
in which the strength of the inversion N was not involved 
(except for u*, Bs and f) appeared to match the SBL 
height defined by turbulent shear stress better than the 
scheme by Zilitinkevich et al. [11] did in which N was 
involved, due to the simulation domain was too small to 
include the effects of gravity waves that developed above 
the SBL. They also conducted medium-resolution LES 
with the domain size sufficiently large to resolve the 
overlying gravity waves; the results showed that the 
formulation [11] with N involved consequently gave a 
better prediction of SBL height. 

In the conventional formulations, the friction velocity 
u* and Coriolis parameter f are proved to be the two most 
predominant variables in determining h, whereas the 
surface buoyancy flux Bs is not an important factor and 
even has less influence than the free-flow stability N. 
Table 2 compares the model performance given by the 
statistical errors of RMSE, MBE, MAE and IOA based  

Table 2. Performance of two linear parameterizations and 
two ANN-based parameterizations using corresponding 
variable combinations as inputs. 

Parameterization RMSE MBE MAE IOA 

(u*, f) 15.59 −0.07 10.54 0.991 

(u*, Bs) 15.26 −0.07 10.48 0.991 

Ro35 22.15 0.95 16.51 0.980 

Ki60 59.53 −28.56 52.16 0.913 

 
on the conventional formula of h = Cnu*/f by Rossby and 
Montgomery [27] (Ro35 in Figure 1) and based on the 
input variable combination of (u*, f) in ANN. Their per- 
formance is quite good and they have close RMSE values 
of 22 m and 16 m; both have very high IOA values near- 
ing to 1. The cases for the conventional formula h = 
−Csu*

3/Bs by Kitaigorodskii [6] (Ki60 in Figure 1) and 
the variable combination of (u*, Bs) in ANN are also 
listed in Table 2. Although Ki60 results in a very high 
IOA value of 0.91, its RMSE is as large as 60 m, which 
is much larger than the RMSE of 15 m for the combina- 
tion (u*, Bs) in ANN. As discussed in section 4, this Ki60 
formulation performs worst among the five conventional 
formulations (Figure 1); this might be due to the cube of 
u* in the formulation and needs to be further explored. 

8. Conclusions 

In this paper, we tried to find out which variables are 
essential and can achieve the best performance in deter- 
mining the stable boundary layer height h based on large- 
eddy simulation data. Artificial neural networks were ap- 
plied to investigate which combination of variables is the 
optimum input. We also evaluated the performance of 
conventional linear formulations for the SBL height pre- 
diction, in which the surface friction velocity u* and the 
Coriolis parameter f were proved to be the two most pre- 
dominant variables to determine h and the free-flow sta- 
bility N showed to be more important than the surface 
buoyancy flux Bs for h prediction. 

The results based on ANN showed that the strongest 
relation of h exists with the surface friction velocity u*. 
The secondly dominant variable relevant to h is the sur- 
face buoyancy flux Bs. The Coriolis parameter f shows to 
be more important compared to the inversion strength N. 
The surface roughness length z0 is not an affective vari- 
able to h. 
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