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ABSTRACT 

This review paper focuses on the application of the Granger causality technique to the study of the causes of recent 
global warming (a case of climatic attribution). A concise but comprehensive review is performed and particular atten- 
tion is paid to the direct role of anthropogenic and natural forcings, and to the influence of patterns of natural variability. 
By analyzing both in-sample and out-of-sample results, clear evidences are obtained (e.g., the major role of greenhouse- 
gases radiative forcing in driving temperature, a recent causal decoupling between solar irradiance and temperature it- 
self) together with interesting prospects of further research. 
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1. Introduction 

The climate is a complex system characterized by several 
subsystems and many bidirectional relations between 
them. At present, the standard strategy to catch the com- 
plex behavior of climate is the application of dynamical 
modeling, using Global Climate Models (GCMs) and 
Regional Climate Models (RCMs): see [1] for the des- 
cription of this dynamical approach and the conceptual 
and practical relevance of these simulations. 

The problem of understanding and weighting the main 
causes of recent climate change is generally faced by 
numerical experiments within this modeling framework. 
The final aim of these studies is to evaluate if one is able 
to attribute this change to some specific causes out of a 
number of possibilities. The situation is quite complex 
but, at least as far as the attribution of global temperature 
changes is concerned (a case of climatic attribution), the 
results coming from dynamical models are quite clear 
and indicate that the fundamental causes of recent global 
warming are anthropogenic forcings (especially the in- 
crease of greenhouse gases in the atmosphere): a compre- 
hensive review is provided in [2]. 

However, these dynamical models are very complex. 
In particular, just a limited number of processes, interac- 
tions and feedbacks can be considered and there are un- 
avoidable uncertainties in attempting to simulate all of 

them in these standard climate models. The study of 
other complex systems has however shown that one often 
benefits from a change in viewpoint when analyzing 
them. There are complementary approaches in a number 
of other fields: e.g., in biology, the molecular biology 
approach vs. a more systemic point of view; in economy, 
the application of “traditional structural” models vs. the 
use of vector autoregressive (VAR) models. 

Thus, a more data-driven approach can be fruitful in 
studies of climatic attribution, e.g. in assessing cause- 
effect relationships between external forcings and tem- 
perature behavior. In the past, for instance, neural net- 
work modeling has been applied for the attribution of 
global temperature (T) [3] and its results confirm the 
major role of anthropogenic forcings in driving T. Fur- 
ther researches have shown the usefulness of neural in- 
vestigations for the attribution of temperature and pre- 
cipitation at a regional scale, too [4,5]. 

In this framework, during the last years, analyses using 
the concept of Granger causality [6] have been perform- 
ed to investigate the possible causal relations between 
external forcings and temperature behavior. In this paper 
we review the studies of climatic atttribution via this 
inferential method. 

2. The Concept of Granger Causality 

The concept of Granger causality is quite simple. Sup- 
pose that we have two variables, x and y. First, we at- *Corresponding author. 
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tempt to forecast yt+1 using past terms of y. We then try 
to forecast yt+1 using past terms of x and y. We say that x 
Granger causes y, if the second forecast is found to be 
more successful, according to standard cost functions. If 
the second prediction is better, then the past of x contains 
a useful information for forecasting yt+1 that is not in the 
past of y. Clearly, Granger causality is based on prece- 
dence and predictability.  

In a more formal way, we consider the vector time se- 
ries  and the following information sets:  

t  and  
We denote with 

 ,t ty x 

  t tI t y


. 1 1, , , ,yx tx y x      1, ,y t tI t y y  
 P y I t 1t  the optimal (minimum 

mean square error) linear forecast of the variable yt+1 
based on the information set  I t . We say that x does 
not Granger cause y, in a bivariate system, if  

     1 1t y t yx

In literature, the causal relationship between the vari-
ables x and y has often been investigated in a bivariate 
system. However, it is well known that in a bivariate 
framework problems of spurious causality and of non-
causality due to omission of a relevant variable can arise. 
These problems can be solved if an auxiliary variable z is 
considered in the analysis, specifying a trivariate system.  

P y I t P y I t   for any t. 

We have that x does not Granger cause y, in a trivari- 
ate system, if     1 1t yz t yxzP y I t P y I t  



 for any t, 
where  and 

.   
   1 1, , , ,yz t t t tI t y z y z  

 1 1 1, , , , , ,t t t t t ty x z y x z    yxzI t
Suppose that the trivariate time series  , ,t t ty x z   

follows a vector autoregressive (VAR) model of finite 
order k: 
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 (1) 

where  is a vector of constants, ,il j 1 2 3, ,c c c c   are 
fixed coefficients and  is a trivariate 
white noise process with nonsingular covariance matrix. 
In this framework, we have that x does not Granger cause 
y, with respect to the information set 

 , ,t yt xt ztu u u u

yxz



 I t , if and only 
if 12, 0j  1, for  This characterization of 
the condition of noncausality is often used in literature to 
conduct the Granger causality tests. 

2, , .j k

In what follows we mainly review the studies of clima- 
tic attribution performed by Granger causality analyses. 

3. Granger Analyses in Specific Climatic 
Problems 

During the last decade the notion of Granger causality 
has been used quite frequently in addressing specific cau- 
sality problems in the climate system. 

For instance, Diks and Mudelsee [7] analyzed the re- 
sults of an ocean drilling program in order to estimate the 
causal relationships and directions among data about 

insolation, δ18O (a proxy for global ice volume) and δ13C 
(which reflects mainly the strength of formation of the 
so-called North Atlantic deep water). 

Kaufmann et al. [8] used satellite data and a Granger 
causality analysis for estimating causal influences of snow 
cover and vegetation on temperatures in different seasons. 
In a further study, considered that the strength of Atlantic 
hurricanes is related to the sea surface temperatures (SST) 
of this ocean, Elsner [9,10] applied a Granger causality 
analysis to time series of global temperatures (GT) and 
SST and found a causal link from GT to SST, thus corrobo- 
rating the hypothesis of changes induced by global warm- 
ing. 

Mosedale et al. [11] investigated SST effects on North 
Atlantic Oscillation (NAO)—an index which substan- 
tially drives the European winter climate—using data from 
simulations made with a coupled Global Climate Model 
(GCM). They showed that the so-called SST tripole in- 
dex provides additional predictive information for the 
NAO than that available by using only past values of 
NAO, i.e. the SST tripole is Granger causal for the NAO. 

Kaufmann et al. [12] studied the effect of urbanization 
and enlargement of towns on precipitation in a Chinese 
case study. They applied Granger causality and clearly 
found that, generally, urbanization causes a deficit in 
precipitation, even if differences for distinct seasons are 
detectable. Finally, Mohkov et al. [13] analyzed the rela- 
tionship between El Niño Southern Oscillation (ENSO) 
and the strength of Indian monsoons. They found a bidi- 
rectional coupling which varies with time and this result 
shall be certainly useful for better understanding the dy- 
namical mechanism behind this interaction. 

The examples of application of Granger causality ana- 
lyses just sketched show the potentiality of this technique 
in addressing causality problems in the climate system. 
Actually, however, in the realm of climate research there 
is a causality problem which overwhelms all other ones. 
It can be summarized in the question: what did cause the 
recent climate change or, at least, the recent global warm- 
ing? Even considered the complexity of the climate sys- 
tem, which is the main external forcing that primarily in- 
duced the increase of temperature observed in the last 
century? Obviously, this is the main problem of attribu- 
tion studies. 

Given the potentialities of Granger analyses, it should 
not be a surprise that several studies have been per- 
formed by this technique in the framework of climatic 
attribution. In the next section we will describe those 
analyses conducted by a standard in-sample approach. 

4. In-Sample Granger Analyses for Climatic 
Attribution and Their Problems 

As a matter of fact, as the problem of global warming 
began to be recognized outside the field of climatologists, 
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several analyses have been performed on the link be- 
tween greenhouse gases and temperatures by several ex- 
perts of statistical methods: see, for instance, [14,15] for 
two pioneering works. 

More recently, even Granger causality has been spe- 
cifically used by several researchers in order to analyze 
the causes of the recent rise in global temperature. 

At our knowledge, the first paper dealing with this 
problem was written by Sun and Wang [16]. They ana- 
lyzed time series of global CO2 emissions and global 
temperature anomalies, finding a strong numerical evi- 
dence that the increase in CO2 emissions causes global 
temperature change. Their approach is based on both 
direct Granger causality and cross-spectral analysis and 
the results of these two methods corroborate each other. 

Kaufmann and Stern [17] assessed, in both directions, 
the linear causality between Southern Hemisphere tem- 
perature and Northern Hemisphere temperature, finding a 
Granger causation from South to North. After having 
included natural and anthropogenic forcings in the re- 
gressive models, they arrived at the conclusion that hu- 
man activity played a major role in driving the historical 
record of temperature. In a strictly logical sense, however, 
other conclusions are possible in their study (see [18]). In 
fact, when the bivariate analysis is combined with a mul- 
tivariate analysis, as in Kaufmann and Stern’s study, the 
results must be analyzed with great care. 

Another study in which CO2 radiative forcing is con- 
sidered in its causal relationship with temperature is that 
of Triacca [19], where, using the methodology of Toda 
and Yamamoto [20], he did not find any detectable linear 
Granger causality from CO2 to global temperature.  

Even the influence of Sun on temperatures has been 
studied by the Granger technique. For instance, Reichel 
et al. [21] used a smoothed solar cycle length (SCL) as 
an index of long-term variability of Sun, estimated by 
spectral analysis of sunspot counts at different data fre- 
quencies. Another index of solar activity used by these 
researchers was total solar irradiance (TSI). In both cases 
they found a significant Granger causality from indices 
of solar activity to temperatures in their in-sample tests. 

Even Mohkov and Smirnov [22] considered the prob- 
lem of weighting Sun influences on temperatures, here in 
terms of solar radiation flux. They applied Granger cau- 
sality for several in-sample tests with different periods, 
also adopting a moving window approach. The final re- 
sults showed that the influence of solar activity on the 
Earth’s climate varies widely over time, but a sensible 
influence is detectable in the second half of the 20th cen- 
tury, even if it seems to decrease at the end of this period, 
since the 80s. Another period of a significant, but weaker, 
influence of solar flux variations on global surface tem- 
perature has been recognized to be 1896-1939. 

In a recent study, Kodra et al. [23] introduced an al- 

ternative test of causality which evidenced that the 
strength of linear causality from CO2 to global tempera- 
ture is stronger than that in the opposite direction. They 
also performed a forecasting test, considering ten out- 
of-sample observations, AR and VAR models, that con- 
firmed the previous in-sample results. 

Attanasio [24] faced the problem of testing Granger 
causality from CO2 radiative forcing (RF) to tempera- 
tures, using the same Toda-Yamamoto technique applied 
by Triacca [19]. Here, however, the deterministic com- 
ponent of the model was characterized only by a constant 
term (vs. the linear trend used by Triacca). Furthermore, 
several time windows were explored, by expanding them 
from present to past: this approach allowed the author to 
estimate the parameters of the model by considering al- 
ways the most recent observations. In this paper a clear 
Granger causality from CO2 RF to temperatures has been 
recognized since 1850. Replacing this anthropogenic 
forcing with natural forcings led to discover no Granger- 
causal link with temperatures. 

More recently, Triacca et al. [25] extended the work 
by Attanasio [24] by considering several trivariate sys- 
tems with the presence of a context variable–a natural 
forcing or an index of natural variability. Their results 
show that the Granger causal link between the radiative 
forcing of greenhouse gases and global temperature per- 
sists even in these cases, so reflecting its robustness. 

This review of in-sample studies shows that several 
different approaches have been performed for application 
of Granger causality tests and that the corresponding 
results are sometimes contrasting. 

Obviously, not all these studies used the same regres- 
sive models. Furthermore, some pioneering research was 
based on the use of variables that, probably, are not di- 
rectly influencing temperatures, as one should require for 
the application of a linear method. At present, for in- 
stance, the direct influence of greenhouse gases is gener- 
ally described by their radiative forcings, rather than by 
their concentrations or, even, their emissions, as done in 
[16]. Finally, in other studies [17] Granger causality has 
been applied in a multivariate framework where a prob- 
lem of dimensionality clearly rises: they had too many 
free parameters in the models if compared with the time 
series length, so that the efficiency of the estimate pa- 
rameters is not assured and overfitting becomes more 
probable. 

However, it seems to us that even other problems af- 
fect the in-sample approach and this fact can weaken the 
robustness of the results obtained in this framework. In 
what follows we briefly discuss this situation. 

First of all, before performing in-sample tests for 
Granger causality, it is important to establish the stochas- 
tic properties of the time series involved, by analyzing 
whether these series are stationary, non-stationary or co- 
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integrated, because, for instance, the use of non-station- 
ary time series can lead to spurious causality results 
[26-28]. Of course, the weakness of this approach is that 
incorrect conclusions drawn by this preliminary analysis 
may affect the results of causality tests and their reliabil- 
ity. 

A way to overcome this situation can be the use of the 
Toda-Yamamoto technique [20], that is robust to the in- 
tegration and possible co-integration properties of the 
variables. In fact, one can apply it whether the variables 
are stationary, integrated or co-integrated of an arbitrary 
order: this procedure requires only the knowledge of the 
maximum order of integration of the series. On the other 
hand, due to the further delays introduced, this technique 
emphasizes the problem of overfitting. 

As a matter of fact, significant in-sample Granger cau- 
sality does not guarantee significant out-of-sample pre- 
dictability. Out-of-sample tests are often recommended 
because they are able to catch the true forecasting ability 
of one variable for another, and the results are more ro- 
bust in terms of overfitting [29-31]. 

In order to overcome these problems, according to the 
analysis of Ashley et al. [32], in recent papers [33,34] we 
used a technique that relies on the out-of-sample com- 
parison of the forecasting performance of two linear 
models. This may be more robust in terms of model se- 
lection biases and overfitting [30,31]. Furthermore, ac- 
cording to Granger’s definition, Granger causality builds 
upon the notion of incremental predictability, so that our 
out-of-sample approach is more keeping the spirit of the 
original definition by Granger [6]. In the next section a 
review of this approach will be presented. 

5. Out-of-Sample Granger Analyses for  
Climatic Attribution 

In this section, we will briefly sketch the method used 
and the results obtained in two studies recently published 
[33,34]. For further details, the reader may refer directly 
to these papers. 

The final aim of the first paper [33] was to establish 
which external forcings can be considered Granger cau- 
sal for global temperature. We analyzed the influence of 
many natural and anthropogenic forcings in a bivariate 
manner. 

Total solar irradiance (TSI) describes quite well the 
direct effect of Sun on Earth’s climate in terms of radia- 
tive forcing; cosmic ray intensity (CRI) can be consid- 
ered as an indirect effect of our star (by means of solar 
wind) on some processes of climatic interest, such as the 
formation of clouds; stratospheric aerosol optical thick- 
ness (SAOT) summarizes the impact of strong volcanic 
eruptions and their interference with climate due to the 
emission and persistence in the low stratosphere of vol- 
canic ash composed by sulfates. All these forcings can be 

considered as natural. 
As far as anthropogenic forcings are concerned, CO2, 

CH4 and N2O concentrations data were taken into ac- 
count for these major greenhouse gases (GHG), their 
single radiative forcings (RF) were calculated and con- 
sidered as effective forcings, and also a GHG-total RF 
has been estimated. 

By taking all these data into account, we were able to 
test the influence of a wide range of forcings on global 
temperature, even of forcings never considered before in 
causality analyses but at present very discussed in the 
arena of the climate debate, such as CRI, whose role is 
very controversial. 

If we consider  y T  and  = one of 
the external forcings, in our application we compared the 
predictive ability one step ahead (in terms of mean 
square errors—MSE) of the two following nested regres- 
sion models: 

 1, ,7ix i   

i       
1 ,

1 1

VAR :
k k

i i i
t j t j j i t j t

j j

y y x   
 

     

t

   (2) 

2
1

AR :
k

t j t j
j

y y  


            (3) 

Here,  
1

i  and 2  are constants included as determi- 
nistic terms, ix  is the i-th forcing,  i

j ,  i
j  and j  

are coefficients of our regressions,  i
t  and t  are 

univariate white noises. The order k of the models was 
kept low  4k 1, , , so that the models are parsimo- 
nious and the residuals are uncorrelated, and the models 
finally selected were those endowed with the best predic- 
tive performance on each test set. 

The Granger out-of-sample tests were performed on 
five test sets which span the following periods: 1941- 
2007, 1951-2007, 1961-2007, 1971-2007, 1981-2007. 
For each test set, the correspondent training set is com- 
posed by data patterns since 1850 till the year before the 
beginning of the test set itself. 

Fixed and recursive schemes were adopted for predict- 
tions. Under the recursive scheme we used the training 
set for the first estimate and forecast out of sample 
one-step ahead; then we added an annual pattern to our 
training set, obtained a second estimate and forecast for 
the next year; and so on, iteratively. Under the fixed 
scheme the parameters were estimated only once on the 
original training set and every one-step ahead forecast 
has been obtained using just these fixed parameters. 

The statistical significance of results has been evalu- 
ated by MSE-t and MSE-REG tests, as described in [35]. 
However, we were not able to use critical values of these 
test statistics, as reported in [35], because our series are 
not stationary. So, we performed a bootstrap procedure to 
calculate our critical values: see [33] for further details. 

The results obtained by this out-of-sample Granger 
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analysis are very clear. If we take TSI, CRI or SAOT as x 
variable, in every case (any natural forcing, scheme and 
test set considered) the null hypothesis of non-Granger 
causality on y T  is never rejected (with only two 
exceptions), even just at 10% significance level. Vice 
versa, there is a clear general evidence of Granger cau- 
sality from anthropogenic forcings to global temperature 
(see [33] for the complete results and other detailed con- 
siderations). 

In short, this paper shows that a genuine Granger 
out-of-sample predictive approach permits to overcome 
problems and contrasting results shown by previous in- 
sample analyses and gives a clear contribution to the as- 
sessment of temperature attribution. 

In the paper just discussed we limited our analysis to a 
bivariate framework. However, it is well known that 
Granger causal links are sensitive to the information set 
which is employed in the analysis. Changing the infor- 
mation set, by extending or reducing the number of time 
series in the study, may lead to different Granger causal 
links. In particular, it is possible to find Granger causality 
from x to y in a bivariate system although x does not 
Granger cause y when also the information contained in a 
third variable z is taken into account [36,37]. 

Furthermore, together with this technical note about 
the possible role of omitted variables on results coming 
from Granger causality analyses, also a more climatic 
argument must be taken into account, which leads to 
possibly extend the information set considered here. In 
[33] we considered the influence of external forcings in 
VAR forecast improvements with respect to the predic- 
tions of the AR model built on data about T only. But, as 
a matter of fact, the climate system shows its own inter- 
nal variability which can contribute to changes in global 
temperature, at least at decadal scale. Thus, it seems a 
good idea to insert some index of this climate variability 
as a context variable z in the information set: this has 
been done in [34]. 

The scope of this new paper was to investigate the 
causal influence of natural and anthropogenic forcings in 
a trivariate framework, where z is represented by one of 
the following indices: Southern Oscillation Index (SOI), 
related to El Niño Southern Oscillation (ENSO); Pacific 
Decadal Oscillation (PDO); Atlantic Multidecadal Oscil- 
lation (AMO). 

We considered the VAR unrestricted model described 
in Equation (1) and the following restricted model: 
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By adopting the same test sets as in the previous paper, 
the one-step-ahead forecast errors were calculated as: 
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Then we evaluated the MSE of these predictions and 
used the MSE-t and MSE-REG tests in order to test the 
null hypothesis. As in the previous paper, a bootstrap 
procedure has been performed to calculate the critical 
values of these tests (see [34] for further details). 

The results of this paper can be summarized as follows. 
If we take GHG-total RF as the x variable, in every case 
(all circulation patterns and test sets considered)—except 
one—the null hypothesis of Granger non-causality on T is 
rejected at the 5% significance level, and very often also 
at 1% significance. This is clear evidence that there is a 
causal link (in the Granger sense) between GHG-total RF 
and global temperature since 1941 up to the present day. 

On the other hand, if TSI is considered as the x vari- 
able, a Granger causal link is significant only in the first 
test set when AMO is included in the information set, 
and in the first two sets when PDO and ENSO are con- 
sidered. In more recent periods this causal link disap- 
pears. 

The situation becomes even clearer if the p-values of 
tests are plotted for every test period, as in Figure 1: see 
[34] for other figures and detailed tables. Here, it is evi- 
dent that, while the influence of GHG-total RF on global 
temperature remains important throughout all the periods, 
the Granger causal link between TSI and T becomes pro- 
gressively less marked with time and completely disap- 
pears for the last two periods. In particular, the influences 
of GHG-total RF and TSI on T appear comparable till the 
50s, but, after that decade, a clear causal decoupling be-  
 

 

Figure 1. Plot of the p-values from the MSE-REG test when 
x = TSI (blue line) and x = GHG-total RF (red line) for z = 
ENSO. The significance threshold of 0.05 is shown (dashed 
line). The increase in p-values over the recent decades is 
evident for the performance of the model with TSI. 
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tween TSI and T is evident and very marked in the data 
of our Granger analysis. At the same time, the Granger 
causality from GHG-total RF to T remains robust and, 
possibly, becomes even more evident: the p-values, 
which are already very small, decrease further. 

In particular, in this way we evidenced a causal de- 
coupling between Sun and global temperatures which has 
been pictured previously just in terms of simple correla- 
tions and graphical methods [38,39]. 

6. Conclusions, Discussion and Prospects 

As shown in previous sections, a number of attempts have 
been performed at applying the concept of Granger cau- 
sality to climatic problems and, more specifically, to cli- 
matic attribution. After some pioneering works, where 
the choice of influencing variables is quite dubious or the 
dimensionality of the multivariate models probably ex- 
ceeds the maximum number of parameters for obtaining 
reliable results, at present the application of Granger 
causality to the climate framework is quite well posed. 

Nevertheless, our review and discussion at Section 4 
show that in-sample approaches may crucially depend on 
preliminary analyses of the stochastic properties of time 
series involved: this could explain also the somewhat 
contrasting results obtained by these attribution studies. 

Therefore, in order to overcome this critical situation, 
we performed out-of-sample Granger analyses for the 
attribution of recent global warming. This approach is 
less dependent on the preliminary assumptions, and more 
properly predictive, and more in the spirit of the original 
concept of Granger causality. The results obtained in this 
way are very clear: the radiative forcings of greenhouse 
gases appear as the main temperature drivers, while 
natural forcings do not Granger cause T in the last de- 
cades, in the case of Sun even if the principal patterns of 
climate variability are considered in an extended trivar- 
iate model. Furthermore, the direct Sun influence on T 
(via total solar irradiance) shows a recent causal de- 
coupling since the 60s. 

Obviously, even if these results represent a clear con- 
tribution to the problem of attribution of recent global 
warming, a discussion of methods and outcomes can 
show directions of future work. We briefly do this in 
what follows. 

The first open problem is surely to test the robustness 
of these results when extended information sets are con- 
sidered. Probably, due to the problem of dimensionality, 
this can be done effectively just in a trivariate framework. 
Here, anyway, it is possible to study several combina- 
tions of variables considered as x (the variable to be 
tested for Granger causality) and z (the context variable). 
Furthermore, in this framework, analyses about the rising 
of spurious or indirect causalities can be performed. 

As a specific study inside a trivariate context, an in- 

teresting analysis can be also performed about the joint 
roles of direct and indirect Sun influences on T, where 
the direct forcing could be represented by solar irradi- 
ance and the indirect one by cosmic rays (modulated by 
solar wind). 

In our opinion, however, a more basic problem con- 
cerns the application of a linear technique to studies of 
causation in a nonlinear system such as climate. In the 
majority of studies reviewed here, the variables used are 
averaged in space (the entire world) and time (one year). 
Thus, it is quite reasonable that, as a consequence of the 
central limit theorem [40], averaging can produce near- 
linear climate relations among variables of the climate 
system, even if we have to do with highly nonlinear rela- 
tions at shorter space-time scales. In this context Granger 
causality may be applied with a good confidence; but 
what happens if the averaging is performed on reduced 
space-time scales? 

With the final aim at approaching this general problem, 
Attanasio and Triacca [41] developed a nonlinear exten- 
sion of a Granger causality model based on neural net- 
works and applied it to the classical problem of CO2 in- 
fluences on T. Outcomes from this nonlinear Granger 
causality analysis are consistent with other results as- 
sessing that CO2 radiative forcing causes recent global 
temperatures. 

Even if the analysis of this research exceeds the scope 
of this paper, in our opinion this approach could show its 
usefulness and should be considered in analyses of attri- 
bution at reduced space-time scales and when the behav- 
ior of other variables of climatic importance, such as pre- 
cipitation, are considered. It is well known, in fact, that 
many nonlinear processes are involved in the hydrologi- 
cal cycle and they cannot be easily “averaged away”. 

We hope to have shown that the research in this field 
is quite active and that future exciting studies can be 
surely envisaged. 
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