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Abstract 
In this paper, a real-time online data-driven adaptive method is developed to 
deal with uncertainties such as high nonlinearity, strong coupling, parameter 
perturbation and external disturbances in attitude control of fixed-wing un-
manned aerial vehicles (UAVs). Firstly, a model-free adaptive control (MFAC) 
method requiring only input/output (I/O) data and no model information is 
adopted for control scheme design of angular velocity subsystem which con-
tains all model information and up-mentioned uncertainties. Secondly, the 
internal model control (IMC) method featured with less tuning parameters 
and convenient tuning process is adopted for control scheme design of the 
certain Euler angle subsystem. Simulation results show that, the method de-
veloped is obviously superior to the cascade PID (CPID) method and the 
nonlinear dynamic inversion (NDI) method. 
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1. Introduction 

The performance of the attitude controller of a fixed-wing UAV determines the 
quality of its autonomous flight. Some accurate mathematical model-based me-
thods were proposed for the attitude control, for example, PID and LQR me-
thods (linearized model based) [1] [2] [3], adaptive control method [4], feedback 
linearization method [5] [6] and nonlinear dynamic inversion method [7] [8]. 
For some other methods, perturbation within a small range is allowed [9] [10] or 
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accurate mathematical model is not a necessity [11] [12]. 
Though these methods have achieved their purpose, there are still some 

drawbacks. Firstly, as the UAV system is strongly coupled, highly nonlinear and 
time variant, etc., approximated models cannot fully represent all characteristics 
of plant model. In the meantime, accurate model is hard to obtain, too costly or 
even inapplicable; secondly, designing controller is complex and tuning is te-
dious due to too many parameters. 

A data-driven control method for designing attitude control law of fixed-wing 
UAV is thus developed. The control system is divided into two cascade subsys-
tems, including an inner loop system for angular velocity control and an outer 
loop system for Euler angle control. As the angular velocity control system con-
tains all model information (certainties and uncertainties), a novel data-driven 
MFAC [13] [14] method is adopted for the inner loop angular velocity control 
law design. MFAC has been wildly used in some fields [15] [16], but hardly in 
aeronautic field. As we know of, only one paper [17] studied the application of 
MFAC to design control law for tracking horizontal trajectory of fixed-wing 
UAV, but it took no consideration of attitude control, which is an unneglectable 
problem. The method developed in our paper uses no model information, but only 
I/O data of UAV to obtain control law by optimizing the deflection angles of con-
trol surfaces in real-time. The model of outer loop control system, which is uni-
versal and contains no uncertainty, depicts the kinematic relationship between 
Euler angel and angular velocity. Thus the IMC method, which was hardly used in 
fixed-wing UAV application but widely in other fields [18] [19] [20], is used to de-
sign outer loop Euler angle control law. IMC based controller is featured with less 
tuning parameters and simple tuning process, for example, only one parameter 
needs to be tuned for each channel of the roll, pitch, and yaw Euler angles. 

2. Theory of the Model Free Adaptive Control 
2.1. Full Formation Dynamic Linearization Method 

Consider the following general single-input-single-output (SISO) nonlinear sys-
tem: 

( ) ( ) ( ) ( ) ( )( ): 1 , , , , ,y uy k f y k y k n u k u k nΣ + = − − 

       
(1) 

which satisfies the following two assumptions: 
A1: Function ( )*f  is smooth; and its continuous and bounded partial de-

rivatives
( )

,0 y
f i n

y k i
∂

≤ ≤
∂ −

 and 
( )

,1 u
f j n

u k j
∂

≤ ≤
∂ −

 exists; 

A2: The system Σ  satisfies generalized Lipschitz condition, that is, for two 
real numbers ( )1 2 1 20, 0k k k k≠ ≥ ≥ , and a positive number b, the system Σ  
satisfies: 

( ) ( ) ( ) ( )1 2 1 21 1y k y k b H k H k+ − + ≤ −
              

(2) 

In above, ( )u k R∈  and ( )y k R∈  represent input and output of the system, 
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respectively. yn  and un  are two integers. ( ) 2* : y un nf R R+ +
  is a nonlinear 

mapping. 
Denote 

( ) ( ) ( ) ( ) ( )
T

, , 1 , , , 1y uH k y k y k L u k u k L = − + − +  

        
(3) 

and 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
T

1

1

1

, , 1 , , , 1y u

y k y k y k

u k u k u k

H k H k H k

y k y k L u k u k L

= − −

= − −

= − −

 = − + − + 







     

     

(4) 

where, yL  and uL  ( )0 ,1y y u uL n L n≤ ≤ ≤ ≤  are integers called pseudo order 
(PO). 

Theorem [13]: For the nonlinear system Σ  mentioned above that satisfies 
the A1 and A2, at a given condition of 0 y yL n≤ ≤  and 1 u uL n≤ ≤ , when 

( ) 0H k ≠ , there must be a time-varying vector called pseudo gradient (PG) 
( ) y uL Lk R +Φ ∈ , which can transform the system Σ  into the following FFDL 

model: 

( ) ( ) ( )T1y k k H k+ = Φ 

                    (5) 

and for an arbitrary time k, ( ) ( ) ( ) ( ) ( )
T

1 1, , , , ,
y y y uL L L Lk k k k kφ φ φ φ+ +

 Φ =     is 
bounded. 

Proof: See [13]. 

2.2. Control Law Design 

Denote ( )dy k  as reference signal. The cost function of input signal is selected 
as: 

( )( ) ( ) ( ) ( ) ( )2 2
1 1 1dJ u k y k y k u k u kλ= + − + + − −          (6) 

where, 0λ >  is a weighting factor. 

According to Equations (5) and (6) and let 
( )( )
( )

0
J u k

u k
∂

=
∂

, the control law can 

be derived as: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )

1 1
1 2

2

1

( ) 1 1 1

1

y y u

y y
y

y

L L L

L L d i i i i y
i i L

L

k y k y k k y k i k u k L i

u k u k
k

φ ρ ρ φ ρ φ

λ φ

+

+ +
= = +

+

  + − − − + − − − +   
  = − +

+

∑ ∑ 

 (7) 

where, ( ]0,1iρ ∈ , 1 y ui L L≤ ≤ + . 
In Equation (7), only PG is unknown and needs to be updated online. 
To obtain PG, the following cost function is adopted: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2T1 1 1J k y k y k k H k k kµΦ = − − −Φ − + Φ −Φ −

  
(8) 

where, 0µ >  is a weighting factor. 
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Letting 
( )( )
( )

0
J k

k
∂ Φ

=
∂Φ

 yields 

( ) ( )
( ) ( ) ( ) ( ) ( )

( )

T

2

1 1 1
1

1

H k y k y k k H k
k k

H k

γ

µ

 − − −Φ − − Φ = Φ − +
+ −

 

    

(9) 

where, ( ]0,2γ ∈ . 
The reset conditions for PG are: 

( ) ( )1kΦ = Φ , if ( )k εΦ ≤  or ( )1H k ε− ≤  or 

( )( ) ( )( )1 1 1
y yL Lsign k signφ φ+ +≠

                 
(10) 

where, ε  is a small positive number. 

3. Model for Unmanned Aerial Vehicles 

The model described here is only used to generate flight data for simulations. 
The nonlinear model of a UAV [21] used in the research as a studying case is 
listed as follows. 

Rotational equations: 

1

2

3

1 sin tan cos tan
0 cos sin
0 sin sec cos sec

v p p
v R q q

r rv

φ φ θ φ θ
θ φ φ
ψ φ θ φ θ

         
         = = ⋅ = −         
                







       

(11) 

[ ] [ ]T TT
1 2 3, , , , , ,p q rp q r f f f w w w = +   

              
(12) 

In which 1v , 2v  and 3v  are virtual inputs which are used in the following 
of the design of Euler angle control law. And 

( ) ( )

( )

0 0

0

2 2

2 2 2 2

2
2 2

2 2 2 2 2

2

p r p r

xz x y z z z y xz a xzz
l l l l n n n n

x z xz x z xz x z xz a a x z xz a a

p
z x xz a

q m
y y y

r

I I I I I I I I V Sb II bp br bp brpq qr C C C C C C C C
I I I I I I I I I V V I I I V V

f
I I I V Scf pr p r C

I I If

β β

ρ β β

ρ

− + − +     
− + + + + + + + +    − − − −     

 
−  = − − +

 
   ( ) ( )

0 0

2 2

2 2 2 2

2

2 2 2 2 2

q

p r p r

m m
a

x x y xz xz x y z a xz x
l l l l n n n n

x z xz x z xz x z xz a a x z xz a a

cqC C
V

I I I I I I I I V Sb I Ibp br bp brpq qr C C C C C C C C
I I I I I I I I I V V I I I V V

α

β β

α

ρ β β

 
 
 
   + +   
 − + − +      − + + + + + + + +     − − − −      

(13) 

( ) ( )

( ) ( )

2 2

21

2

3

2 2

0

0 0
2

0

a a r r

e

a a r r

z l xz n z l xz n
x z xz x z xz

a
a

m e
y

r

xz l x n xz l x n
x z xz x z xz

b bI C I C I C I C
I I I I I Iw V S cw C

Iw
b bI C I C I C I C

I I I I I I

δ δ δ δ

δ

δ δ δ δ

δρ δ
δ

 
⋅ + ⋅ + 

− −          = ⋅         
 ⋅ + ⋅ + − − 

   

(14) 

Translational equations: 

( ) ( ) ( ) ( ) ( )
0 0

0

2
2 2

2

sin cos sin sin cos sin cos
2 2 2

cos sin
2 2 2

q q e e

a r

prop propa
D D L L L D L D e m t a

a

a
Y Y Yp Yr Y a Y r

a a

S CV S cqrv qw g C C C C C C C C k V
m V m

u
V S bp brv pw ru g C C C C C C
m V V

w

α α δ δ

β δ δ

ρρθ α α α α α α α α δ δ

ρθ φ β δ δ

   − − + − + + + + − + − + −    
 

  = − + + + + + + + 
  







( ) ( ) ( ) ( )0 0

2

cos cos sin cos sin cos sin cos
2 2q q e e

a
D D L L D L D L e

a

V S cqqu pv g C C C C C C C C
m Vα α δ δ

ρθ φ α α α α α α α α δ

 
 
 
      

  
− + + − + − + − + − +  

  

 (15) 
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and 

2 2 2 1 1, tan , sina
a

w vV u v w
u V

α β− −   = + + = =   
             

(16) 

In the above equations, m and g represent mass and gravitational constant, 
respectively; xI , yI , zI , and xzI  represent moments of inertia; φ , θ , and 
ψ  represent roll, pitch, and yaw angle, respectively; p, q, and r represent roll, 
pitch, and yaw angular velocity, respectively; aδ , eδ , and rδ  are deflection 
angles of aileron, elevator, and rudder, respectively; tδ  is throttle, ranging 
from 0 to 1; b represents wing span; c represents chord length; S represents wing 
area; aV  represents air speed; ρ  represents air density; α  and β  are at-
tack and sideslip angle, respectively; propS  and propC  are coefficients with re-
spect to propeller. 

0l
C , lC

β
, 

plC , 
rl

C , 
alC

δ
, and 

rlC
δ

 are aerodynamic de-
rivatives with respect to roll moment; 

0mC , mC
α

, 
qmC , and 

emC
δ

 are aero-
dynamic derivatives with respect to pitch moment; 

0nC , nC
β

, 
pnC , 

rnC , 
anC

δ
, 

and 
rnC

δ
 are aerodynamic derivatives with respect to yaw moment; 

0LC , LC
α

, 

qLC , and 
eLC
δ

 are aerodynamic derivatives with respect to lift; 
0YC , YC

β
, 

pYC , 

rYC , 
aYC

δ
, and 

rYC
δ

 are aerodynamic derivatives with respect to side force; 

0DC , DC
α

, 
qDC , and 

eDC
δ

 are aerodynamic derivatives with respect to drag. 
Appendix E of Reference [21] also gives specific values of the above symbols. 

4. Brief Introduction of Internal Model Control 

The general structure of an IMC-based control system [18] is depicted in Figure 
1; where, ( )mG s  is called internal model. ( )pG s  represents the plant, ( )R s  
represents reference signal, ( )Y s  represents the output signal, ( )U s  represents 
input signal of the plant, ( )D s  is disturbances and ( )IMCG s  is the internal 
model controller. ( )IMCG s  is the internal model controller that has an expres-
sion like 

( ) ( ) ( )1
IMC pG s G s f s−

−=
                    (17) 

where, ( )pG s−  includes the parts with minimum phase of ( )pG s . ( )f s  is a 
low pass filter that has a formation like 

( )
( )

1

1
n

f

f s
sλ

=
+

                      

(18) 

 

 
Figure 1. The general structure of internal model control. 
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fλ  is called filter coefficient. Rationality of ( )IMCG s  can be guaranteed by 
selecting appropriate value of n. 

Thus, the two transfer functions of the above system can be obtained as: 

( )
( )

( ) ( )
( ) ( ) ( )1
IMC p

IMC p m

G s G sY s
R s G s G s G s

=
 + −                 

(19) 

( )
( )

( ) ( ) ( )
( ) ( ) ( )

1

1
IMC m p

IMC p m

G s G s G sY s
D s G s G s G s

−  =
 + −                 

(20) 

Hence, if ( )mG s  and ( )IMCG s  satisfy the following two conditions: 

( ) ( )p mG s G s=                        (21) 

( ) ( )1
IMC pG s G s−=

                      (22) 

Equations (19) and (20) turn into: 

( )
( )

1
Y s
R s

=
                          

(23) 

( )
( )

0
Y s
D s

=
                          

(24) 

Therefore, building on conditions (23) and (24), the system can track the ref-
erence signal and at the same time, would theoretically not be influenced by dis-
turbances. 

5. Control Scheme 

In this part, the attitude control laws are derived. In controlling a fixed-wing 
UAV, usually, deflecting aileron generates roll movement, deflecting elevator 
generates pitch movement, and deflecting rudder generates yaw movement. The 
overall control scheme is shown as: 

Applying Equations ((7), (9), and (10)) yields the control laws of roll, pitch, 
and yaw angular rates, shown as: 

Roll rate: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( )

T

2

1 1 1
1

1

p p p p
p p

p p

H k p k p k k H k
k k

H k

γ

µ

 − − −Φ − − Φ = Φ − +
+ −

 



 

(25) 

( ) ( )1p pkΦ = Φ , if ( )p pk εΦ ≤  or ( )1p pH k ε− ≤  or  

( )( ) ( )( )1 1 1
py py

p p
L Lsign k signφ φ+ +≠

                
(26) 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1 1
1 2

2

1

1

1 1 1
py py pu

py py
py

py

a a

L L L
p p p p p p

L L d i i i i a py
i i L

p
p L

k k

k p k p k k p k i k k L i

k

δ δ

φ ρ ρ φ ρ φ δ

λ φ

+

+ +
= = +

+

= −

  + − − − + − − − +   
  +

+

∑ ∑  (27) 

Pitch rate: 
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( ) ( )
( ) ( ) ( ) ( ) ( )

( )

T

2

1 1 1
1

1

q q q q
q q

q q

H k q k q k k H k
k k

H k

γ

µ

 − − −Φ − − Φ = Φ − +
+ −

 



 

(28) 

( ) ( )1q qkΦ = Φ , if ( )q qk εΦ ≤  or ( )1q qH k ε− ≤  or 

( )( ) ( )( )1 1 1
qy qy

q q
L Lsign k signφ φ+ +≠

                 
(29) 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1 1
1 2

2

1

1

1 1 1
qy qy qu

qy qy
qy

qy

e e

L L L
q q q q q q
L L d i i i i e qy

i i L

q
q L

k k

k q k q k k q k i k k L i

k

δ δ

φ ρ ρ φ ρ φ δ

λ φ

+

+ +
= = +

+

= −

  + − − − + − − − +   
  +

+

∑ ∑  (30) 

Yaw rate: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( )

T

2

1 1 1
1

1

r r r r
r r

r r

H k r k r k k H k
k k

H k

γ

µ

 − − −Φ − − Φ = Φ − +
+ −

 



  

(31) 

( ) ( )1r rkΦ = Φ , if ( )r rk εΦ ≤  or ( )1r rH k ε− ≤  or 

( )( ) ( )( )1 1 1
ry ry

r r
L Lsign k signφ φ+ +≠

                
(32) 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 1
1 2

2

1

1

( ) 1 1 1
ry ry ru

ry ry
ry

ry

r r

L L L
r r r r r r
L L d i i i i r ry

i i L

r
r L

k k

k r k r k k r k i k k L i

k

δ δ

φ ρ ρ φ ρ φ δ

λ φ

+

+ +
= = +

+

= −

  + − − − + − − − +   
  +

+

∑ ∑   (33) 

The Euler angle control laws are included in Equation (11) and Figure 2. 

6. Numerical Validation 

Simulation was carried out in the MATLAB environment by writing .m file to 
demonstrate the feasibility and superiority of the method developed by making  

 

 
Figure 2. Illustration of the overall control scheme. 
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comparison with CPID and NDI methods. In the simulation, the UAV was un-
der external disturbances. 

6.1. Value of Variables and Parameters 

Parameter values of algorithms are shown as (Table 1): 
Reference signals: 

( )
( )
( )

0.1sin 0.5π rad

0.1sin 0.5π rad

0.1sin 0.5π rad

d

d

d

t

t

t

φ

θ

ψ

=


=
 =                     

(34) 

6.2. Numerical Validation 

In this part, the control simulation of the small UAV was performed with the 
UAV under external low frequency disturbances. Simulation results are as fol-
lows: 

From the figures the following conclusions can be drawn: 
Figures 3-5 reveal that, without using any model information of the UAV, the 

developed data-driven method is obviously superior to the CPID method (also a 
data-driven method) and the NDI method (requires detailed model information) 
in control performance. The fundamental reason is that the method develop has 
a better control performance on body rate control, namely, realizing a better 
performance in dealing with uncertainties, which is revealed in Figures 6-11. 

The essential difference between the MFAC method and the CPID method is 
the acquisition of dynamic model, see Equations (9) and (10). In the MFAC me-
thod, because of the identification of PG, a dynamic model can be obtained, 
which is foundation for optimal control law design, making deflection angles of 
control surfaces at each time point are optimum. This is also why the varying 
frequency of the control surfaces of the method developed is so high in Figures 
6-8. The optimum control laws take into account of all uncertainties, thus even 
they may disturb the system, these control laws will make the output of UAV 
system track and approximate reference signal (see Figures 9-11). While for the  

 
Table 1. Parameters of the control scheme. 

Channel Roll Pitch Yaw 

value 

0.07f
φλ =  0.07f

θλ =  0.07f
ψλ =  

3, 1py puL L= =  3, 1qy quL L= =  3, 1qy quL L= =  

( )0.5 1,2,3,4p
i iρ = =  ( )0.5 1,2,3,4q

i iρ = =  ( )0.05 1,2,3,4r
i iρ = =  

1pη =  1qη =  1rη =  

410pλ
−=  310qλ

−=  310rλ
−=  

 0.01pµ =  0.01qµ =  0.01rµ =  

 510pε
−=  510qε

−=  510rε
−=  

https://doi.org/10.4236/aast.2019.41001


M. L. Chen, Y. Wang 
 

 

DOI: 10.4236/aast.2019.41001 9 Advances in Aerospace Science and Technology 
 

 
Figure 3. Roll angle response. 

 

 
Figure 4. Pitch angle response. 

 

 
Figure 5. Yaw angle response. 
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Figure 6. Deflection angle of aileron. 

 

 
Figure 7. Deflection angle of elevator. 

 

 
Figure 8. Deflection angle of rudder. 
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Figure 9. Angular rate of data-driven method. 

 

 
Figure 10. Angular rate of CPID method. 

 

 
Figure 11. Angular rate of NDI method. 
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most widely used CPID-based controller that lacks dynamic model obtaining 
capabilities, its deflection angles at each sampling point are not optimum and 
thus cannot cover the whole flight envelop with best performance (the control 
law may be optimal in a certain short time range, see 0 - 2.3 seconds in first and 
third enlarged figures in Figure 10, but not in the whole range). As for the NDI 
method, it relies on accurate model information and some of them such as the 
external disturbances are hard to be obtained, resulting in poor robustness of 
this method. Besides, the deflection angles by NDI are not necessarily optimum 
at each sampling point under unmodeled uncertainties. 

7. Conclusion 

The attitude control of fixed wing UAVs is studied based on the characteristics 
of inner loop and outer loop control systems, and realized by using MFAC to 
design the control law of inner loop angular velocity system and IMC to design 
that of Euler angle system. Firstly, the MFAC based controller has achieved in-
ner loop angular velocity control using only I/O data without any model infor-
mation. The IMC based controller has realized outer loop Euler angle control 
using a few tuning parameters (only one for each channel) and easy tuning 
process. Secondly, compared with conventional model-free CPID method and 
detailed model-based NDI method, it is discovered that the method developed is 
capable of dealing with strong coupling and highly nonlinear system such as that 
of fixed-wing UAVs; and it shows superiority in dealing with disturbances. 
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Nomenclature 

( )D s  Laplace transforms of disturbance signal 
, ,p q rf f f  unknown nonlinear parts, rad/s2 

g gravitational constant, m/s2 
( )mG s  transfer function of internal model 
( )pG s  transfer function of plant model 
( )IMCG s  Internal model controller 

, ,x y zI I I  roll, pitch and yaw moments of inertial, kg∙m2 

xzI  product of inertial, kg∙m2 
,y uL L  pseudo order 
,py puL L  pseudo order for roll rate control law 
,qy quL L  pseudo order for pitch control law 
,ry ruL L  pseudo order for yaw rate control law 

m mass of UAV, kg 
, ,p q r  fuselage roll, pitch and yaw angular rates, rad/s 
, ,d d dp q r  reference signals for fuselage roll, pitch and yaw angular rates, rad/s 
( )R s  Laplace transforms of reference signal 
, ,u v w  velocity components for fuselage, m/s 
( )U s  Laplace transforms of input signal 

1 2 3, ,ν ν ν  virtual inputs for control systems of roll, pitch and yaw angular rates, 
rad/s2 

aV  velocity of UAV in air coordinate, m/s 
( )Y s  Laplace transforms of output signal 

α  angle of attack, rad 
rad  angle of sideslip, rad 

, , ,a e r tδ δ δ δ  deflection angles for aileron, elevator, rudder and throttle, rad 
, ,p q rη η η  parameters in MFAC algorithm 
, ,p q rε ε ε  lower limit for resetting PG 

, ,φ θ ψ  roll, pitch and yaw angles of UAV, rad 
, ,d d dφ θ ψ  reference signals for roll, pitch and yaw angles, rad 
, ,p q rλ λ λ  parameters in MFAC algorithm 
, ,f f f

φ θ ψλ λ λ  filter coefficient of internal model controller for Euler angle 
, ,p q rµ µ µ  parameters in MFAC algorithm 
, ,p q rρ ρ ρ  parameters in MFAC algorithm 
, ,p q rΦ Φ Φ  pseudo gradient in MFAC algorithm 
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