[1]
|
J. Y. Lai, C. Y. Yoon, J. J. Yoo, T. Wulf, and A. Atala. (2002) Phenotypic and functional characterization of in bivo tissue engineered smooth muscle from normal and pathological bladders. J. Urol., Sugar Land, 168, 1853–1857.
|
[2]
|
D. Orlic, J. Kajstura, S. Chimenti, I. Jakoniuk, S. M. Anderson, B. Li, et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.
|
[3]
|
M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. Mosca, et al., (1999) Multilineage poten- tial of adult humanmesenchymal stem cells. Science, 284, 143–147.
|
[4]
|
S. Davani, A. Marandin, N. Mersin, B. Royer, B. Kantelip, P. Herve, et al. (2003) Mesenchymal progenitor cells differentiate into an endothelial pheno- type, enhance vascular density, and improve heart fun- ction in a rat cellular cardiomyoplasty model. Circulation, 108, II253–II258.
|
[5]
|
B. Kinner, J. M. Zaleskas, M. Spector. (2002) Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells. Exp. Cell Res, 278, 72–83.
|
[6]
|
E. S. Jeon, H. J. Moon, M. J. Lee, H. Y. Song, Y. M. Kim, Y. C. Bae, et al., (2006) Sphingosylphosphoryl- choline induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through A TGF- beta-dependent mechanism. J Cell Sci., 119, 4994–5005.
|
[7]
|
G. C. Pipes, E. E. Creemers, E. N. Olson. (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev., 20, 1545–1556.
|
[8]
|
C. D. Li, W. Y. Zhang, H. L. Li, X. X. Jiang, Y. Zhang, P. H. Tang, et al. (2005) Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation. Cell Res., 15, 539–547.
|
[9]
|
P. Price and T. J. McMillan. (1990) Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation. Cancer Res., 50, 1392–1396.
|
[10]
|
N. Kobayashi, T. Yasu, H. Ueba, M. Sata, S. Hashimoto, M. Kuroki, et al. (2004) Mechanical stress promotes the epression of smooth muscle-like properties in marrow stromal cells. Exp. Hematol., 32, 1238–1245.
|
[11]
|
J. J. Ross, Z. Hong, B. Willenbring, L. Zeng, B. Isenberg, E. H. Lee, et al. (2006) Cytokine-induced differentia- tion of multipotent adult progenitor cells into functional smooth muscle cells, J Clin Invest., 116, 3139–3149.
|
[12]
|
S. G. Ball, A. C. Shuttleworth, C. M. Kielty. (2004) Direct cell contact influences bone marrow mesen- chymal stem cell fate. Int. J. Biochem, Cell Biol., 36, 714–727.
|
[13]
|
S. Sinha, M. H. Hoofnagle, P. A. Kingston, M. E. McCanna, G. K. Owens. (2004) Transforming growth factor-β1 signaling contributes to development of smooth muscle cells from embryonic stem cells. Am. J. Physiol. Cell. Physiol., 287, C1560–C1568.
|