[1]
|
Van, B.J. and Inscho, E.W. (2015) Regulation of Renal Function and Blood Pressure Control by P2 Purinoceptors in the Kidney. Current Opinion in Pharmacology, 21, 82-88. https://doi.org/10.1016/j.coph.2015.01.003
|
[2]
|
Hamm, L.L. and Simon, E.E. (1990) Ammonia Transport in the Proximal Tubule. Mineral Electrolyte Metabolism, 16, 283-290.
|
[3]
|
Yim, H.E. and Yoo, K.H. (2008) Renin-Angiotensin System-Considerations for Hypertension and Kidney. Electrolyte and Blood Pressure Research, 6, 42-50. https://doi.org/10.5049/EBP.2008.6.1.42
|
[4]
|
Giani, J.F., Janjulia, T., Taylor, B., Bernstein, E.A., Shah, K., Shen, X.Z., et al. (2014) Renal Generation of Angiotensin II and the Pathogenesis of Hypertension. Current Hypertension Reports, 16, 477. https://doi.org/10.1007/s11906-014-0477-1
|
[5]
|
Nagami, G.T. and Kraut, J.A. (2010) Acid-Base Regulation of Angiotensin Receptors in the Kidney. Current Opinion in Nephrology and Hypertension, 19, 91-97. https://doi.org/10.1097/MNH.0b013e32833289fd
|
[6]
|
Nagami, G.T., Chang, J.A., Plato, M.E. and Santamaria, R. (2008) Acid Loading in Vivo and Low pH in Culture Increase Angiotensin Receptor Expression: Enhanced Ammoniagenic Response to Angiotensin II. American Journal of Physiology-Renal Physiology, 6, 1864-1870. https://doi.org/10.1152/ajprenal.90410.2008
|
[7]
|
Kobori, H., Nangaku, M., Navar, L.G. and Nishiyama, A. (2007) The Intrarenal Renin-Angiotensin System: From Physiology to the Pathobiology of Hypertension and Kidney Disease. Pharmaco-logical Reviews, 59, 251-287. https://doi.org/10.1124/pr.59.3.3
|
[8]
|
Saxena, P.R. (1992) Interaction between the Ren-in-Angiotensin-Aldosterone and Sympathetic Nervous Systems. Journal of Cardiovascular Pharmacology, 19, 80-88. https://doi.org/10.1097/00005344-199219006-00013
|
[9]
|
Zimmerman, M.C., Lazartigues, E., Lang, J.A., Sinnayah, P., Ahmad, I.M., Spitz, D.R. and Davisson, R.L. (2002) Superoxide Mediates the Actions of Angiotensin II in the Central Nervous System. Circulation Research, 91, 1038-1045. https://doi.org/10.1161/01.RES.0000043501.47934.FA
|
[10]
|
Satou R., Penrose, H. and Navar, L.G. (2018) Inflammation as a Regulator of the Renin-Angiotensin System and Blood Pressure. Current Hypertension Reports, 20, 100. https://doi.org/10.1007/s11906-018-0900-0
|
[11]
|
Horita, S., Nakamura, M., Suzuki, M., Satoh, N., Suzuki, A., Homma, Y., et al. (2017) The Role of Renal Proximal Tubule Transport in the Regulation of Blood Pressure. Kidney Research and Clinical Practice, 36, 12-21. https://doi.org/10.23876/j.krcp.2017.36.1.12
|
[12]
|
Boron, W.F. (2006) Acid-Base Transport by the Renal Proximal Tubule. Journal of American Society of Nephrology, 17, 2368-2382. https://doi.org/10.1681/ASN.2006060620
|
[13]
|
Boedtkjer, E. and Aalkjaer, C. (2013) Disturbed Acid-Base Transport: An Emerging Cause of Hypertension. Frontiers in Physiology, 4, 388. https://doi.org/10.3389/fphys.2013.00388
|
[14]
|
Ehret, G.B., Munroe, P.B., Rice, K.M., Bochud, M., Johnson, A.D., Chasman, D.I., et al. (2011) Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk. Nature, 478, 103-109. https://doi.org/10.1038/nature10405
|
[15]
|
Boedtkjer, E., Praetorius, J., Matchkov, V.V., Stankevicius, E., Mogensen, S., Füchtbauer, A.C., et al., (2011) Disruption of Na+-HCO3--Cotransporter NBCn1 (SLC4A7) Inhibits NO-Mediated Vasorelaxation, Smooth Muscle Ca2+-Sensitivity and Hypertension Development in Mice. Circulation, 124, 1819-1829. https://doi.org/10.1161/CIRCULATIONAHA.110.015974
|
[16]
|
Luft, F.C., Zemel, M.B., Sowers, J.A., Fineberg, N.S. and Weinberger, M.H. (1990) Sodium Bicarbonate and Sodium Chloride: Effects on Blood Pressure and Electrolyte Homeostasis in Normal and Hypertensive Man. Journal of Hypertension, 8, 663-670. https://doi.org/10.1097/00004872-199007000-00010
|
[17]
|
Groger, N., Vitzthum, H., Frohlich, H., Krüger, M., Ehmke, H., Braun, T. and Boettger, T. (2012) Targeted Mutation of SLC4A5 Induces Arterial Hypertension and Renal Metabolic Acidosis. Human Molecular Genetics, 21, 1025-1036. https://doi.org/10.1093/hmg/ddr533
|
[18]
|
Guyton, A.C. (1991) Blood Pressure Control-Special Role of the Kidneys and Body Fluids. Science, 252, 1813-1816. https://doi.org/10.1126/science.2063193
|
[19]
|
Schultheis, P.J., Clarke, L.L., Meneton, P., Miller, M.L., Soleimani, M., et al. (1998) Renal and Intestinal Absorptive Defects in Mice Lacking the NHE3 Na+/H+ Exchanger. Nature Genetics, 19, 282-285. https://doi.org/10.1038/969
|
[20]
|
Hamm, L.L., Nakhoul, N. and Hering-Smith, K.S. (2015) Acid-Base Homeostasis. Clinical Journal of American Society of Nephrology, 10, 2232-2242. https://doi.org/10.2215/CJN.07400715
|
[21]
|
Valles, P., Wysocki, J. and Batlle, D. (2005) Angiotensin II and Renal Tubular Ion Transport. Scientific World Journal, 5, 680-690. https://doi.org/10.1100/tsw.2005.92
|
[22]
|
Henger, A., Tutt, P., Riesen, W.F., Hulter, H.N. and Krapf, R. (2000) Acid-Base and Endocrine Effects of Aldosterone and Angiotensin II Inhibition in Metabolic Acidosis in Human Patients. Journal of Laboratory and Clinical Medicine, 136, 379-389. https://doi.org/10.1067/mlc.2000.110371
|
[23]
|
Nagami, G.T. (2004) Ammonia Production and Secretion by S3 Proximal Tubule Segments from Acidotic Mice: Role of ANG II. American Journal of Physiology-Renal Physiology, 287, 707-712. https://doi.org/10.1152/ajprenal.00189.2003
|
[24]
|
Nagami, G.T. (1995) Effect of Luminal Angiotensin II on Ammonia Production and Secretion by Mouse Proximal Tubules. American Journal of Physiology, 269, 86-92. https://doi.org/10.1152/ajprenal.1995.269.1.F86
|
[25]
|
Wang, X., Armando, I., Upadhyay, K., Pascua, A. and Jose, P.A. (2009) The Regulation of Proximal Tubular Salt Transport in Hypertension: An Update. Current Opinion in Nephrology and Hypertension, 18, 412-420. https://doi.org/10.1097/MNH.0b013e32832f5775
|
[26]
|
Baum, M., Twombley, K., Gattineni, J., Joseph, C., Wang, L., Zhang, Q., Dwarakanath, V., et al. (2012) Proximal Tubule Na+/H+ Exchanger Activity in Adult NHE8-/-, NHE3-/-, and NHE3-/-/NHE8-/- Mice. American Journal of Physiology-Renal Physiology, 303, 1495-1502. https://doi.org/10.1152/ajprenal.00415.2012
|
[27]
|
Li, H.C., Du, Z., Barone, S., Rubera, I., McDonough, A.A., Tauc, M., et al. (2013) Proximal Tubule Specific Knockout of the Na+/H+ Exchanger NHE3: Effects on Bicarbonate Absorption and Ammonium Excretion. Journal of Molecular Medicine, 91, 951-963. https://doi.org/10.1007/s00109-013-1015-3
|
[28]
|
Noonan, W.T., Woo, A.L., Nieman, M.L., Prasad, V., Schultheis, P.J., Shull, G.E. and Lorenz, J.N. (2005) Blood Pressure Maintenance in NHE3-Deficient Mice with Transgenic Expression of NHE3 in Small Intestine. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 288, 685-691. https://doi.org/10.1152/ajpregu.00209.2004
|
[29]
|
Li, X. and Zhuo, J.L. (2007) Selective Knockdown of AT1 Receptors by RNA Interference Inhibits Val5-ANG II Endocytosis and NHE-3 Expression in Immortalized Rabbit Proximal Tubule Cells. American Journal of Physiology-Cellular Physiology, 293, 367-378. https://doi.org/10.1152/ajpcell.00463.2006
|
[30]
|
Seki, G., Coppola, S., Yoshitomi, K., Burckhardt, B.C., Samarzija, I., Müller-Berger, S. and Fromter, E. (1996) On the Mechanism of Bicarbonate Exit from Renal Proximal Tubular Cells. Kidney International, 49, 1671-1677. https://doi.org/10.1038/ki.1996.244
|
[31]
|
Felder, R.A., Jose, P.A., Xu, P. and Gildea, J.J. (2016) The Renal Sodium Bicarbonate Cotransporter NBCe2: Is It a Major Contributor to Sodium and pH Homeostasis? Current Hypertension Reports, 18, 71. https://doi.org/10.1007/s11906-016-0679-9
|
[32]
|
Damkier, H.H., Nielsen, S. and Praetorius, J. (2007) Molecular Expression of SLC4-derived Na+-Dependent Anion Transporters in Selected Human Tissues. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 293, R2136-R2146. https://doi.org/10.1152/ajpregu.00356.2007
|
[33]
|
Sonalker, P.A., Tofovic, S.P. and Jackson, E.K. (2004) Increased Expression of the Sodium Transporter BSC-1 in Spontaneously Hypertensive Rats. Journal of Pharmacological and Experimental Therapeutics, 311, 1052-1061. https://doi.org/10.1124/jpet.104.071209
|
[34]
|
Wang, T. and Chan, Y.L. (1990) Mechanism of Angiotensin II Action on Proximal Tubular Transport. Journal of Pharmacological and Experimental Therapeutics, 252, 689-695.
|
[35]
|
Chatsudthipong, V. and Chan, Y.L. (1991) Inhibitory Effect of Angiotensin II on Renal Tubular Transport. American Journal of Physiology-Renal Physiology, 260, F340-F346. https://doi.org/10.1152/ajprenal.1991.260.3.F340
|
[36]
|
Liu, F.Y. and Cogan, M.G. (1990) Role of Protein Kinase C in Proximal Bicarbonate Absorption and Angiotensin Signaling. American Journal of Physiology, 258, F927-F933. https://doi.org/10.1152/ajprenal.1990.258.4.F927
|
[37]
|
Liu, F.Y. and Cogan, M.G. (1989) Angiotensin II Stimulates Early Proximal Bicarbonate Absorption in the Rat by Decreasing Cyclic Adenosine Monophosphate. Journal of Clinical Investigation, 84, 83-91. https://doi.org/10.1172/JCI114174
|
[38]
|
Alper, S.L. and Chernova, M.N. (2001) Stewart, A.K. Regulation of Na+-Independent Cl-/HCO- 3 Exchangers by pH. Journal of the Pancreas, 2, 171-175.
|
[39]
|
Alper, S.L., Darman, R.B., Chernova, M.N. and Dahl, N.K. (2001) The AE Gene Family of Cl/HCO-3 Exchangers. Journal of Nephrology, 15, S41-53.
|
[40]
|
Alper, S.L. (2006) Molecular Physiology of SLC4 Anion Exchangers. Experimental Physiology, 91, 153-161. https://doi.org/10.1113/expphysiol.2005.031765
|
[41]
|
Simao, S., Fraga, S., Jose, P.A. and Soares-da-Silva, P. (2008) Oxidative Stress and Alpha1-Adrenoceptor-Mediated Stimulation of the Cl-/HCO-3 Exchanger in Immortalized SHR Proximal Tubular Epithelial Cells. British Journal of Pharmacology, 153, 1445-1455. https://doi.org/10.1038/bjp.2008.16
|
[42]
|
Pedrosa, R., Villar, V.A., Pascua, A.M., Simao, S., Hopfer, U., Jose, P.A. and Soares-da-Silva, P. (2008) H2O2 Stimulation of the Cl-/HCO-3 Exchanger by Angiotensin II and Angiotensin II Type 1 Receptor Distribution in Membrane Microdomains. Hypertension, 51, 1332-1338. https://doi.org/10.1161/HYPERTENSIONAHA.107.102434
|
[43]
|
Stone, D.K., Seldin, D.W., Kokko, J.P. and Jacobson, H.R. (1983) Anion Dependence of Rabbit Medullary Collecting Duct Acidification. Journal of Clinical Investigation, 71, 1505-1508. https://doi.org/10.1172/JCI110905
|
[44]
|
Doucet, A., Katz, A.I. and Morel, F. (1979) Determination of Na-K-ATPase Activity in Single Segments of the Mammalian Nephron. American Journal of Physiology, 237, F105-F113. https://doi.org/10.1152/ajprenal.1979.237.2.F105
|
[45]
|
Katz, A.I. (1982) Renal Na-K-ATPase: Its Role in Tubular Sodium and Potassium Transport. American Journal of Physiology, 242, F207-F219. https://doi.org/10.1152/ajprenal.1982.242.3.F207
|
[46]
|
Codina, J., Wall, S.M. and DuBose Jr., T.D. (1999) Contrasting Functional and Regulatory Profiles of the Renal H+, K+-ATPases. Seminars in Nephrology, 19, 399-404.
|
[47]
|
Doucet, A. (1988) Function and Control of Na-K-ATPase in Single Nephron Segments of the Mammalian Kidney. Kidney International, 34, 749-760. https://doi.org/10.1038/ki.1988.245
|
[48]
|
Massey, K.J., Li, Q., Rossi, N.F., Keezer, S.M., Mattingly, R.R. and Yingst, D.R. (2016) Phosphorylation of Rat Kidney Na-K Pump at Ser938 Is Required for Rapid Angiotensin II-Dependent Stimulation of Activity and Trafficking in Proximal Tubule Cells. American Journal of Physiology-Cellular Physiology, 310, C227-C232. https://doi.org/10.1152/ajpcell.00113.2015
|
[49]
|
Rangel, L.B., Caruso-Neves, C., Lara, L.S. and Lopes, A.G. (2002) Angiotensin II Stimulates Renal Proximal Tubule Na+-ATPase Activity through the Activation of Protein Kinase C. Bio-chimica et Biophysica Acta, 1564, 310-316. https://doi.org/10.1016/S0005-2736(02)00472-8
|
[50]
|
White, C.N., Figtree, G.A., Liu, C.C., Garcia, A., Hamilton, E.J., Chia, K.K. and Rasmussen, H.H. (2009) Angiotensin II Inhibits the Na+-K+ Pump via PKC-Dependent Activation of NADPH Oxidase. American Journal of Physiology-Cellular Physiology, 296, C693-C700. https://doi.org/10.1152/ajpcell.00648.2008
|
[51]
|
Salyer, S.A., Parks, J., Barati, M.T., Lederer, E.D., Clark, B.J., Klein, J.D., et al. (2013) Aldosterone regulates Na+, K+ ATPase Activity in Human Renal Proximal Tubule Cells through Mineralocorticoid Receptor. Biochimica et Biophysica Acta, 1833, 2143-2152. https://doi.org/10.1016/j.bbamcr.2013.05.009
|
[52]
|
Herman, M.B., Rajkhowa, T., Cutuli, F., Springate, J.E. and Taub, M. (2010) Regulation of Renal Proximal Tubule Na-K-ATPase by Prostaglandins. American Journal of Physiology-Renal Physiology, 298, F1222-F1234. https://doi.org/10.1152/ajprenal.00467.2009
|
[53]
|
Nagami, G.T. (2008) Role of Angiotensin II in the Enhancement of Ammonia Production and Secretion by the Proximal Tubule in Metabolic Acidosis. American Journal of Physiology-Renal Physiology, 294, F874-F880. https://doi.org/10.1152/ajprenal.00286.2007
|
[54]
|
Weiner, I.D. and Verlander, J.W. (2017) Ammonia Transporters and Their Role in Acid-Base Balance. Physiological Reviews, 97, 465-494. https://doi.org/10.1152/physrev.00011.2016
|
[55]
|
Chobanian, M.C. and Julin, C.M. (1991) Angiotensin II Stimulates Am-moniagenesis in Canine Renal Proximal Tubule Segments. American Journal of Physiology, 260, F19-F26. https://doi.org/10.1152/ajprenal.1991.260.1.F19
|
[56]
|
Nagami, G.T. (1990) Ammonia Production and Secretion by Isolated Perfused Proximal Tubule Segments. Mineral Electrolyte Metabolism, 16, 259-263.
|
[57]
|
Nagami, G.T. (1992) Effect of Angiotensin II on Ammonia Production and Secretion by Mouse Proximal Tubules Perfused in Vitro. Journal of Clinical Investigation, 89, 925-931. https://doi.org/10.1172/JCI115673
|
[58]
|
Weiner, I.D. and Verlander, J.W. (2013) Renal Ammonia Metabolism and Transport. Comparative Physiology, 3, 201-220. https://doi.org/10.1002/cphy.c120010
|
[59]
|
Weiner, I.D. and Hamm, L.L. (2007) Molecular Mechanisms of Renal Ammonia Transport. Annual Review in Physiology, 69, 317-340. https://doi.org/10.1146/annurev.physiol.69.040705.142215
|
[60]
|
Carnauba, R.A., Baptistella, A.B., Paschoal, V. and Hübscher, G.H. (2017) Diet-Induced Low-Grade Metabolic Acidosis and Clinical Outcomes: A Review. Nutrients, 9, E538. https://doi.org/10.3390/nu9060538
|
[61]
|
Adeva, M.M. and Souto, G. (2011) Diet-Induced Metabolic Acidosis. Clinical Nutrition, 30, 416-421. https://doi.org/10.1016/j.clnu.2011.03.008
|
[62]
|
Farber, M.O., Szwed, J.J., Dowell, A.R. and Strawbridge, R.A. (1976) The Acute Effects of Respiratory and Metabolic Acidosis on Renal Function in the Dog. Clinical Science and Molecular Medicine, 50, 165-169. https://doi.org/10.1042/cs0500165
|
[63]
|
Ng, H.Y., Chen, H.C., Tsai, Y.C., Yang, Y.K. and Lee, C.T. (2011) Activation of Intrarenal Renin-Angiotensin System during Metabolic Acidosis. American Journal of Nephrology, 34, 55-63. https://doi.org/10.1159/000328742
|
[64]
|
Aalkjaer, C. and Mulvany, M.J. (1988) Effect of Changes in Intracellular pH on the Contractility of Rat Resistance Vessels. Progress in Biochemical Pharmacology, 23, 150-158.
|
[65]
|
Aalkjaer, C. and Mulvany, M.J. (1991) Steady-State Effects of Arginine Vasopressin on Force and pHi of Isolated Mesenteric Resistance Arteries from Rats. American Journal of Physiology, 261, C1010-C1017. https://doi.org/10.1152/ajpcell.1991.261.6.C1010
|
[66]
|
Boedtkjer, E., Praetorius, J. and Aalkjaer, C. (2006) NBCn1 (SLC4A7) Mediates the Na+-Dependent Bicarbonate Transport Important for Regulation of Intracellular pH in Mouse Vascular Smooth Muscle Cells. Circulation Research, 98, 515-523. https://doi.org/10.1161/01.RES.0000204750.04971.76
|
[67]
|
Danielsen, A.A., Parker, M.D., Lee, S., Boron, W.F., Aalkjaer, C. and Boedtkjer, E. (2013) Splice Cassette II of Na+-HCO-3 Cotransporter NBCn1 (SLC4A7) Interacts with Calcineurin A: Implications for Transporter Activity and Intracellular pH Control during Rat Artery Contractions. Journal of Biological Chemistry, 288, 8146-8155. https://doi.org/10.1074/jbc.M113.455386
|
[68]
|
Freeman, A.M. and Pennings, N. (2019) Insulin Resistance. In: StatPearls [Internet], StatPearls Publishing, Treasure Island (FL), Las Vegas, NV.
|
[69]
|
Artunc, F., Schleicher, E., Weigert, C., Fritsche, A., Stefan, N. and Haring, H.U. (2016) The Impact of Insulin Resistance on the Kidney and Vasculature. Nature Review Nephrology, 12, 721-737. https://doi.org/10.1038/nrneph.2016.145
|
[70]
|
Salvetti, A., Brogi, G., Di Legge, V. and Bernini, G.P. (1993) The Inter-Relationship between Insulin Resistance and Hypertension. Drugs, 46, 149-159. https://doi.org/10.2165/00003495-199300462-00024
|
[71]
|
DeFronzo, R.A. and Beckles, A.D. (1979) Glucose Intolerance Following Chronic Metabolic Acidosis in man. American Journal of Physiology, 236, E328-E334. https://doi.org/10.1152/ajpendo.1979.236.4.E328
|
[72]
|
Bellasi, A., Micco, L.D., Santoro, D., Marzocco, S., Simone, E.D., et al. (2016) Correction of Metabolic Acidosis Improves Insulin Resistance in Chronic Kidney Disease. BMC Nephrology, 17, 158. https://doi.org/10.1186/s12882-016-0372-x
|
[73]
|
Souto, G., Donapetry, C., Calvino, J. and Adeva, M.M. (2011) Metabolic Acidosis-Induced Insulin Resistance and Cardiovascular Risk. Metabolic Syndrome and Related Disorders, 9, 247-253. https://doi.org/10.1089/met.2010.0108
|
[74]
|
Kumari, M., Sharma, R., Pandey, G., Ecelbarger, C.M., Mishra, P. and Tiwari, S. (2019) Deletion of Insulin Receptor in the Proximal Tubule and Fasting Augment Albumin Excretion. Journal of Cellular Bio-chemistry, 120, 10688-10696. https://doi.org/10.1002/jcb.28359
|
[75]
|
Zhou, M.S., Schulman, I.H. and Zeng, Q. (2012) Link between the Renin-Angiotensin System and Insulin Resistance: Implications for Cardiovascular Disease. Vascular Medicine, 17, 330-341. https://doi.org/10.1177/1358863X12450094
|
[76]
|
Guagliardo, N.A., Yao, J., Bayliss, D.A. and Barrett, P.Q. (2011) TASK Channels Are Not Required to Mount an Aldosterone Secretory Response to Metabolic Acidosis in Mice. Molecular and Cellular Endocrinology, 336, 47-52. https://doi.org/10.1016/j.mce.2010.11.017
|
[77]
|
Mitsuuchi, Y., Kawamoto, T., Naiki, Y., Miyahara, K., Toda, K., Kuribayashi., et al. (1992) Congenitally Defective Aldosterone Biosynthesis in Humans: The Involvement of Point Mutations of the P-450C18 Gene (CYP11B2) in CMO II Deficient Patients. Biochemical and Biophysical Research Communications, 182, 974-979. https://doi.org/10.1016/0006-291X(92)91827-D
|
[78]
|
Schambelan, M., Sebastian, A., Katuna, B.A. and Arteaga, E. (1987) Adrenocortical Hormone Secretory Response to Chronic NH4Cl-Induced Metabolic Acidosis. American Journal of Physiology, 252, E454-E460. https://doi.org/10.1152/ajpendo.1987.252.4.E454
|
[79]
|
Wagner, C.A. (2014) Effect of Mineralocorticoids on Acid-Base Balance. Nephron Physiology, 128, 26-34. https://doi.org/10.1159/000368266
|
[80]
|
Hulter, H.N., Ilnicki, L.P., Harbottle, J.A. and Sebastian, A. (1977) Impaired Renal H+ Secretion and NH3 Production in Mineralocorticoid-Deficient Glucocorti-coid-Replete Dogs. American Journal of Physiology, 232, 136-146. https://doi.org/10.1152/ajprenal.1977.232.2.F136
|
[81]
|
Murakami, K., Sasaki, S., Takahashi, Y. and Uenishi, K. (2008) Japan Dietetic Students' Study for Nutrition and Biomarkers Group. Association between Dietary Acid-Base Load and Cardiometabolic Risk Factors in Young Japanese Women. British Journal of Nutrition, 100, 642-651. https://doi.org/10.1017/S0007114508901288
|
[82]
|
Ferrari, P. (2003) Cortisol and the Renal Handling of Electrolytes: Role in Glucocorticoid-Induced Hypertension and Bone Disease. Best Practical Research in Clinical Endocrinology and Metabolism, 17, 575-589. https://doi.org/10.1016/S1521-690X(03)00053-8
|
[83]
|
Hamm, L.L., Ambühl, P.M. and Alpern, R.J. (1999) Role of Glucocorticoids in Acidosis. American Journal of Kidney Diseases, 34, 960-965. https://doi.org/10.1016/S0272-6386(99)70059-4
|
[84]
|
Whitworth, J.A., Williamson, P.M., Mangos, G. and Kelly. J.J. (2005) Cardiovascular Consequences of Cortisol Excess. Vascular Health Risk Management, 1, 291-299. https://doi.org/10.2147/vhrm.2005.1.4.291
|
[85]
|
Jackson, K.E., Jackson, D.W., Quadri, S., Reitzell, M.J. and Navar, L.G. (2011) Inhibition of Heme Oxygenase Augments Tubular Sodium Reabsorption. American Journal of Physiology-Renal Physiology, 300, F941-F946. https://doi.org/10.1152/ajprenal.00024.2010
|
[86]
|
Elbirt, K. and Bonkovsky, H. (1999) Heme Oxygenase: Recent Advances in Understanding Its Regulation and Role. Proceedings of the Association of American Physicians, 111, 438-447. https://doi.org/10.1111/paa.1999.111.5.438
|
[87]
|
Magalhaes, P.A., de Brito, T.S., Freire, R.S., da Silva, M.T., dos Santos, A.A., Vale, M.L., et al. (2016) Metabolic Acidosis Aggravates Experimental Acute Kidney Injury. Life Sciences, 146, 58-65. https://doi.org/10.1016/j.lfs.2016.01.007
|
[88]
|
Christou, H., Bailey, N., Kluger, M.S., Mitsialis, S.A. and Kourembanas, S. (2005) Extracellular Acidosis Induces Heme Oxygenase-1 Expression in Vascular Smooth Muscle Cells. American Journal of Physiology Heart Circulation Physiology, 288, H2647-2652. https://doi.org/10.1152/ajpheart.00937.2004
|
[89]
|
Quadri, S., Prathipati, P., Jackson, D.W. and Jackson, K.E. (2013) Augmentation of Heme Oxygenase Promotes Acute Angiotensin II Induced Hypertension. Clinical and Experimental Medical Sciences, 1, 21-43. https://doi.org/10.12988/cems.2013.13003
|
[90]
|
Tracz, M.J., Alam, J. and Nath, K.A. (2007) Physiology and Pathophysiology of Heme: Implications for Kidney Disease. Journal of American Society of Nephrology, 18, 414-420. https://doi.org/10.12988/cems.2013.13003
|
[91]
|
Lee, J.B., Patak, R.V. and Mookerjee, B.K. (1976) Renal Prostaglandins and the Regulation of Blood Pressure and Sodium and Water Homeostasis. American Journal of Medicine, 60, 798-816. https://doi.org/10.1016/0002-9343(76)90893-7
|
[92]
|
Sun, F.F., Taylor, B.M., Mcguire, J.C. and Wong, P.Y.K. (1981) Metabolism of Prostaglandins in the Kidney. Kidney International, 19, 760-770. https://doi.org/10.1038/ki.1981.78
|
[93]
|
Lee, J.B. and Attallah, A.A. (1975) Renal Prostaglandins. Nephron, 15, 350-368. https://doi.org/10.1159/000180520
|
[94]
|
Bolam, D.L., Leuschen, M.P. and Nelson Jr., R.M. (1983) Prostaglandin Levels Following Acute Metabolic Acidosis. Prostaglandins Leukotrienes and Medicine, 12, 381-383. https://doi.org/10.1016/0262-1746(83)90028-8
|
[95]
|
Attallah, A.A., Payakkapan, W. and Lee, J.B. (1974) Metabolism of Prostaglandin A: 1. The Kidney Cortex as a Major Site of PGA2 Degradation. Life Sciences, 14, 1521-1534. https://doi.org/10.1016/0024-3205(74)90163-5
|
[96]
|
Nielsen, R., Birn, H., Moestrup, S.K., Nielsen, M., Verroust, P. and Christensen, E.I. (1998) Characterization of a Kidney Proximal Tubule Cell Line, LLC-PK1, Expressing Endocytotic Active Megalin. Journal of the American Society of Nephrology, 10, 1767-1776.
|
[97]
|
Sahai, A., Goyal, M. and Tannen, R.L. (1990) Prostaglandin F2 Alpha Inhibits the Ammoniagenic Response to Acute Acidosis in LLC-PK1 Cells. Journal of the American Society of Nephrology, 1, 882-889.
|