[1]
|
Qi, W., Shapter, J.G., Wu, Q., Yin, T., Gao, G. and Cui, D. (2017) Nanostructured Anode Materials for Lithium-Ion Batteries: Principal, Recent Progress and Future Perspectives. Journal of Materials Chemistry A, 5, 19521-19540. https://doi.org/10.1039/C7TA05283A
|
[2]
|
Wang, L.P., Yu, L., Wang, X., Srinivasan, M. and Xu, Z.J. (2015) Recent Developments in Electrode Materials for Sodium-Ion Batteries. Journal of Materials Chemistry A, 3, 9353-9378. https://doi.org/10.1039/C4TA06467D
|
[3]
|
Hwang, J.-Y., Myung, S.-T. and Sun, Y.-K. (2017) Sodium-Ion Batteries: Present and Future. Chemical Society Reviews, 46, 3529-3614. https://doi.org/10.1039/C6CS00776G
|
[4]
|
Huang, Y., Zheng, Y., Li, X., Adams, F., Luo, W., Huang, Y. and Hu, L. (2018) Electrode Materials of Sodium-Ion Batteries toward Practical Application. ACS Energy Letters, 3, 1604-1612. https://doi.org/10.1021/acsenergylett.8b00609
|
[5]
|
Lee, K.T., Ramesh, T.N., Nan, F., Botton, G. and Nazar, L.F. (2011) Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries. Chemistry of Materials, 23, 3593-3600. https://doi.org/10.1021/cm200450y
|
[6]
|
Lu, Y., Wang, L., Cheng, J. and Goodenough, J.B. (2012) Prussian Blue: A New Framework of Electrode Materials for Sodium Batteries. Chemical Communications, 48, 6544-6546. https://doi.org/10.1039/c2cc31777j
|
[7]
|
Jian, Z., Han, W., Lu, X., Yang, H., Hu, Y.-S., Zhou, J., Zhou, Z., Li, J., Chen, W., Chen, D. and Chen, L. (2013) Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries. Advanced Energy Materials, 3, 156-160. https://doi.org/10.1002/aenm.201200558
|
[8]
|
Ramasamy, H.V., Kaliyappan, K., Thangavel, R., Aravindan, V., Kang, K., Kim, D.U., Park, Y., Sun, X. and Lee, Y.-S. (2017) Cu-Doped P2-Na0.5Ni0.33Mn0.67O2 Encapsulated with MgO as a Novel High Voltage Cathode with Enhanced Na-Storage Properties. Journal of materials Chemistry A, 5, 8408-8415. https://doi.org/10.1039/C6TA10334K
|
[9]
|
Park, J.-K., Park, G.-G., Kwak, H.H., Hong, S.-T. and Lee, J.-W. (2018) Enhanced Rate Capability and Cycle Performance of Titanium-Substituted P2-Type Na0.67Fe0.5Mn0.5O2 as a Cathode for Sodium-Ion Batteries. ACS Omega, 3, 361-368. https://doi.org/10.1021/acsomega.7b01481
|
[10]
|
Tang, K., Fu, L., White, R.J., Yu, L., Titirici, M.-M., Antonietti, M. and Maier, J. (2012) Hollow Carbon Nanospheres with Superior Rate Capability for Sodium-Based Batteries. Advanced Energy Materials, 2, 873-877. https://doi.org/10.1002/aenm.201100691
|
[11]
|
Wang, Y.-X., Chou, S.-L., Liu, H.-K. and Dou, S.-X. (2013) Reduced Graphene Oxide with Superior Cycling Stability and Rate Capability for Sodium Storage. Carbon, 57, 202-208. https://doi.org/10.1016/j.carbon.2013.01.064
|
[12]
|
Ding, J., Wang, H., Li, Z., Kohandehghan, A., Cui, K., Xu, Z., Zahiri, B., Tan, X., Lotfabad, E.M., Olsen, B.C. and Mitlin, D. (2013) Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes. ACS Nano, 7, 11004-11015. https://doi.org/10.1021/nn404640c
|
[13]
|
Kim, Y., Park, Y., Choi, A., Choi, N.-S., Kim, J., Lee, J., Ryu, J.H., Oh, S.M. and Lee, K.T. (2013) An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries. Advanced Materials, 25, 3045-3049. https://doi.org/10.1002/adma.201204877
|
[14]
|
Zhou, X. and Guo, Y.-G. (2014) Highly Disordered Carbon as a Superior Anode Material for Room-Temaperature Sodium-Ion Batteries. ChemElectroChem, 1, 83-86. https://doi.org/10.1002/celc.201300071
|
[15]
|
Chen, C., Wen, Y., Hu, X., Ji, X., Yan, M., Mai, L., Hu, P., Shan, B. and Huang, Y. (2015) Na(+) Intercalation Pseudocapacitance in Graphene-Coupled Titanium Oxide Enabling Ultra-Fast Sodium Storage and Long-Term Cycling. Nature Communications, 6, Article No. 6929. https://doi.org/10.1038/ncomms7929
|
[16]
|
Chen, K.-Y., Zhang, W.-X., Liu, Y., Zhu, H.-P., Duan, J., Xiang, X.-H., Xue, L.-H. and Huang, Y.-H. (2015) Carbon Coated K(0.8)Ti(1.73)Li(0.27)O4: A Novel Anode Material for Sodium-Ion Batteries with a Long Cycle Life. Chemical Communications, 51, 1608-1611. https://doi.org/10.1039/C4CC08051C
|
[17]
|
Hung, T.-F., Lan, W.-H., Yeh, Y.-W., Chang, W.-S., Yang, C.-C. and Lin, J.-C. (2016) Hydrothermal Synthesis of Sodium Titanium Phosphate Nanoparticles as Efficient Anode Materials for Aqueous Sodium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 4, 7074-7079. https://doi.org/10.1021/acssuschemeng.6b01962
|
[18]
|
Nystrom, G., Razaq, A., Stromme, M., Nyholm, L. and Mihranyan, A. (2009) Ultrafast All-Polymer Paper-Based Batteries. Nano Letters, 9, 3635-3639. https://doi.org/10.1021/nl901852h
|
[19]
|
Chen, J. and Cheng, F.Y. (2009) Combination of Lightweight Elements and Nanostructured Materials for Batteries. Accounts of Chemical Research, 42, 713-723. https://doi.org/10.1021/ar800229g
|
[20]
|
Pan, L.J., Yu, G.H., Zhai, D.Y., Lee, H.R., Zhao, W.T., Liu, N., Wang, H.L., Tee, B.C.K., Shi, Y., Cui, Y. and Bao, Z.N. (2012) Hierarchical Nanostructured Conducting Polymer Hydrogel with High Electrochemical Activity. Proceedings of the National Academy of Sciences of the United States of America, 109, 9287-9292. https://doi.org/10.1073/pnas.1202636109
|
[21]
|
Wu, H., Yu, G., Pan, L., Liu, N., McDowell, M.T., Bao, Z. and Cui, Y. (2013) Stable Li-Ion Battery Anodes by In-Situ Polymerization of Conducting Hydrogel to Conformally Coat Silicon Nanoparticles. Nature Communications, 4, Article No. 1943. https://doi.org/10.1038/ncomms2941
|
[22]
|
Wang, S., Wang, L., Zhang, K., Zhu, Z., Tao, Z. and Chen, J. (2013) Organic Li4C8H2O6 Nanosheets for Lithium-Ion Batteries. Nano Letters, 13, 4404–4409. https://doi.org/10.1021/nl402239p
|
[23]
|
Wang, S., Wang, L., Zhu, Z., Hu, Z., Zhao, Q. and Chen, J. (2014) All Organic Sodium-Ion Batteries with Na4C8H2O6. Angewandte Chemie International Edition, 53, 5892-5896. https://doi.org/10.1002/anie.201400032
|
[24]
|
Park, Y., Shin, D.-S., Woo, S.H., Choi, N.S., Shin, K.H., Oh, S.M., Lee, K.T. and Hong, S.Y. (2012) Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries. Advanced Materials, 24, 3562-3567. https://doi.org/10.1002/adma.201201205
|
[25]
|
Han, M.H., Gonzalo, E., Singh, G. and Rojo, T. (2015) A Comprehensive Review of Sodium Layered Oxides: Powerful Cathodes for Na-Ion Batteries. Energy & Environmental Science, 8, 81-102. https://doi.org/10.1039/C4EE03192J
|
[26]
|
Mayo, M., Griffith, K.J., Pickard, C.J. and Morris, A.J. (2016) Ab Initio Study of Phosphorus Anodes for Lithium- and Sodium-Ion Batteries. Chemistry of Materials, 28, 2011-2021. https://doi.org/10.1021/acs.chemmater.5b04208
|
[27]
|
Stratford, J.M., Mayo, M., Allan, P.K., Pecher, O., Borkiewicz, O.J., Wiaderek, K.M., Chapman, K.W., Pickard, C.J., Morris, A.J. and Grey, C.P. (2017) Investigating Sodium Storage Mechanisms in Tin Anodes: A Combined Pair Distribution Function Analysis, Density Functional Theory, and Solid-State NMR Approach. Journal of the American Chemical Society, 139, 7273-7286. https://doi.org/10.1021/jacs.7b01398
|
[28]
|
Li, J., Yan, D., Lu, T., Qin, W., Yao, Y. and Pan, L. (2017) Significantly Improved Sodium-Ion Storage Performance of CuS Nanosheets Anchored into Reduced Graphene Oxide with Ether-Based Electrolyte. ACS Applied Materials & Interfaces, 9, 2309-2316. https://doi.org/10.1021/acsami.6b12529
|
[29]
|
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M. and Yaghi, O.M. (2002) Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295, 469-472. https://doi.org/10.1126/science.1067208
|
[30]
|
Rowsell, J.L.C. and Yaghi, O.M. (2006) Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks. Journal of the American Chemical Society, 128, 1304-1315. https://doi.org/10.1021/ja056639q
|
[31]
|
Bhattacharjee, S., Yang, D.-A. and Ahn, W.-S. (2011) A New Heterogeneous Catalyst for Epoxidation of Alkenesvia One-Step Post-Functionalization of IRMOF-3 with a Manganese (II) Acetylacetonate Complex. Chemical Communications, 47, 3637-3639. https://doi.org/10.1039/c1cc00069a
|
[32]
|
Kim, J., McNamara, N.D., Her, T.H. and Hicks, J.C. (2013) Carbothermal Reduction of Ti-Modified IRMOF-3: An Adaptable Synthetic Method to Support Catalytic Nanoparticles on Carbon. ACS Applied Materials & Interfaces, 5, 11479-11487. https://doi.org/10.1021/am404089v
|
[33]
|
Rostamnia, S. and Xin, H. (2014) Basic Isoreticular Metal-Organic Framework (IRMOF-3) Porous Nanomaterial as a Suitable and Green Catalyst for Selective Unsymmetrical Hantzsch Coupling Reaction. Applied Organometallic Chemistry, 28, 359-363. https://doi.org/10.1002/aoc.3136
|
[34]
|
Lee, Y.-R., Cho, S.-M., Ahn, W.-S., Lee, C.-H., Lee K.-H. and Cho, W.-S. (2015) Facile Synthesis of an IRMOF-3 Membrane on Porous Al2O3 Substrate via a Sonochemical Route. Microporous and Mesoporous Materials, 213, 161-168. https://doi.org/10.1016/j.micromeso.2015.04.021
|
[35]
|
Bhattacharjee, S. (2018) Synthesis and Application of Layered Double Hydroxide-Hosted 2-Aminoterephthalate for the Knoevenagel Condensation Reaction. Inorganic and Nano-Metal Chemistry, 48, 340-346. https://doi.org/10.1080/24701556.2019.1567538
|
[36]
|
Britt, D., Tranchemontagne, D. and Yaghi, O.M. (2008) Metal-Organic Frameworks with High Capacity and Selectivity for Harmful Gases. Proceedings of the National Academy of Sciences of the United States of America, 105, 11623-11627. https://doi.org/10.1073/pnas.0804900105
|
[37]
|
Karabacak, M., Cinar, M., Unal, Z. and Kurt, M. (2010) FT-IR, UV Spectroscopic and DFT Quantum Chemical Study on the Molecular Conformation, Vibrational and Electronic Transitions of 2-Aminoterephthalic Acid. Journal of Molecular Structure, 982, 22-27. https://doi.org/10.1016/j.molstruc.2010.07.033
|
[38]
|
Renault, St., Oltean, V.A., Ebadi, M., Edström, K. and Brandell, D. (2017) Dilithium 2-Aminoterephthalate as a Negative Electrode Material for Lithium-Ion Batteries. Solid State Ionics, 307, 1-5. https://doi.org/10.1016/j.ssi.2017.05.005
|
[39]
|
Becke, A.D. (1993) Density-Functional Thermochemistry. III. The Role of Exact Exchange. Journal of Chemical Physics, 98, 5648-5652. https://doi.org/10.1063/1.464913
|
[40]
|
Matin, M.A., Chitumalla, R.K., Lim, M., Gao, X. and Jang, J.K. (2015) Density Functional Theory Study on the Cross-Linking of Mussel Adhesive Proteins. Journal of Physical Chemistry B, 119, 5496-5504. https://doi.org/10.1021/acs.jpcb.5b01152
|
[41]
|
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B. and Fox, D.J. (2016) Gaussian 16, Revision B.01. Gaussian, Inc., Wallingford.
|
[42]
|
Lakraychi, A.E., Dolhem, F., Djedaïni-Pilard, F., Thiam, A., Frayret, C. and Becuwe, M. (2017) Decreasing Redox Voltage of Terephthalate-Based Electrode Material for Li-Ion Battery Using Substituent Effect. Journal Power Sources, 359, 198-204. https://doi.org/10.1016/j.jpowsour.2017.05.046
|
[43]
|
He, J., Zhang, Y., Yu, J., Pan, Q. and Xu, R. (2006) Two 2-D 36 Tessellated Metal-Organic Frameworks Constructed from Trimetallic Clusters and DicarboxylateDitopic Links. Materials Research Bulletin, 41, 925-933. https://doi.org/10.1016/j.materresbull.2006.01.018
|
[44]
|
Garibay, S.J., Wang, Z. and Cohen, S.M. (2010) Evaluation of Heterogeneous Metal-Organic Framework Organocatalysts Prepared by Postsynthetic Modification. Inorganic Chemistry, 49, 8086-8091. https://doi.org/10.1021/ic1011549
|
[45]
|
Liu, L.L., et al. (2012) Engineering Metal-Organic Frameworks Immobilize Gold Catalysts for Highly Efficient One-Pot Synthesis of Propargylamines. Green Chemistry, 14, 1710-1720. https://doi.org/10.1039/c2gc35284b
|
[46]
|
Thompson, H.W. and Torkington, P. (1945) The Vibrational Spectra of Esters and Ketones. Journal of the Chemical Society, 171, 640-645. https://doi.org/10.1039/jr9450000640
|
[47]
|
Fukui, K. (1982) Role of Frontier Orbitals in Chemical Reactions. Science, 218, 747-754. https://doi.org/10.1126/science.218.4574.747
|
[48]
|
Fukui, K., Yonezawa, T. and Shingu, H. (1952) A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. The Journal of Chemical Physics, 20, 722-725. https://doi.org/10.1063/1.1700523
|
[49]
|
Koopmans, T. (1934) über Die Zuordnung Von Wellenfunktionen Und EigenwertenZu Den EinzelnenElektronenEines Atoms. Physica, 1, 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2
|