[1]
|
Christie, G.H. and Kenner, J. (1922) LXXI.—The Molecular Configurations of Polynuclear Aromatic Compounds. Part I. The Resolution of γ-6:6’-Dinitro- and 4:6:4’:’6’-Tetranitro-Diphenic Acids into Optically Active Components. Journal of the Chemical Society, Transactions, 121, 614-620. https://doi.org/10.1039/CT9222100614
|
[2]
|
Wube, A.A., et al. (2006) Knipholone, a Selective Inhibitor of Leukotriene Metabolism. Phytomedicine, 13, 452-456. https://doi.org/10.1016/j.phymed.2005.01.012
|
[3]
|
Pfeiffer, R.R. (1981) Structural Features of Vancomycin. Reviews of Infectious Diseases, 3, S205-S209. https://doi.org/10.1093/clinids/3.Supplement_2.S205
|
[4]
|
Brooks, W.H., Guida, W.C. and Daniel, K.G. (2011) The Significance of Chirality in Drug Design and Development. Current Topics in Medicinal Chemistry, 11, 760-770. https://doi.org/10.2174/156802611795165098
|
[5]
|
Nguyen, L.A., He, H. and Pham-Huy, C. (2006) Chiral Drugs: An Overview. International Journal of Biomedical Science, 2, 85-100.
|
[6]
|
McConathy, J. and Owens, M.J. (2003) Stereochemistry in Drug Action. The Primary Care Companion to The Journal of Clinical Psychiatry, 5, 70-73. https://doi.org/10.4088/PCC.v05n0202
|
[7]
|
Ariëns, E.J. (1991) Racemic Therapeutics—Ethical and Regulatory Aspects. European Journal of Clinical Pharmacology, 41, 89-93. https://doi.org/10.1007/BF00265897
|
[8]
|
Geisslinger, G., Menzel-Soglowek, S., Beck, W.S. and Brune, K. (1993) R-Flurbiprofen: Isomeric Ballast or Active Entity of the Racemic Compound? Agents and Actions Supplements, 44, 31-36.
|
[9]
|
Raffa, R.B., et al. (1992) Opioid and Nonopioid Components Independently Contribute to the Mechanism of Action of Tramadol, an ‘Atypical’ Opioid Analgesic. Journal of Pharmacology and Experimental Therapeutics, 260, 275-285.
|
[10]
|
Raffa, R.B., et al. (1993) Complementary and Synergistic Antinociceptive Interaction between the Enantiomers of Tramadol. Journal of Pharmacology and Experimental Therapeutics, 267, 331-340.
|
[11]
|
Grond, S., Meuser, T., Zech, D., Hennig, U. and Lehmann, K.A. (1995) Analgesic Efficacy and Safety of Tramadol Enantiomers in Comparison with the Racemate: A Randomised, Double-Blind Study with Gynaecological Patients Using Intravenous Patient-Controlled Analgesia. Pain, 62, 313-320. https://doi.org/10.1016/0304-3959(94)00274-I
|
[12]
|
Carcu-Dobrin, M., et al. (2017) Enantioselective Analysis of Fluoxetine in Pharmaceutical Formulations by Capillary Zone Electrophoresis. Saudi Pharmaceutical Journal, 25, 397-403. https://doi.org/10.1016/j.jsps.2016.09.007
|
[13]
|
Kim, J., Riggs, K.W. and Rurak, D.W. (2004) Stereoselective Pharmacokinetics of Fluoxetine and Norfluoxetine Enantiomers in Pregnant Sheep. Drug Metabolism & Disposition, 32, 212-221.
|
[14]
|
DeVane, C.L. and Boulton, D.W. (2002) Great Expectations in Stereochemistry: Focus on Antidepressants. CNS Spectrums, 7, 28-33. https://doi.org/10.1017/S1092852900028571
|
[15]
|
Tokunaga, E., Yamamoto, T., Ito, E. and Shibata, N. (2018) Understanding the Thalidomide Chirality in Biological Processes by the Self-Disproportionation of Enantiomers. Scientific Reports, 8, 17131. https://doi.org/10.1038/s41598-018-35457-6
|
[16]
|
Mori, T., et al. (2018) Structural Basis of Thalidomide Enantiomer Binding to Cereblon. Scientific Reports, 8, 1294. https://doi.org/10.1038/s41598-018-19202-7
|
[17]
|
Vargesson, N. (2015) Thalidomide-Induced Teratogenesis: History and Mechanisms. Birth Defects Research Part C: Embryo Today: Reviews, 105, 140-156. https://doi.org/10.1002/bdrc.21096
|
[18]
|
Toenjes, S.T. and Gustafson, J.L. (2018) Atropisomerism in Medicinal Chemistry: Challenges and Opportunities. Future Medicinal Chemistry, 10, 409-422. https://doi.org/10.4155/fmc-2017-0152
|
[19]
|
Welch, C.J., et al. (2009) Factors Influencing the Interconversion of a New Class of Dibenzodiazepine Sulfonamide Atropisomers. Chirality, 21, E105-E109. https://doi.org/10.1002/chir.20785
|
[20]
|
Nguyen, T. (2018) Giving Atropisomers Another Chance. Chemical & Engineering News, 96, 22-25. https://doi.org/10.1021/cen-09633-feature1
|
[21]
|
Beutner, G., et al. (2018) Adventures in Atropisomerism: Total Synthesis of a Complex Active Pharmaceutical Ingredient with Two Chirality Axes. Organic Letters, 20, 3736-3740. https://doi.org/10.1021/acs.orglett.8b01218
|
[22]
|
Bai, H.Y., et al. (2019) Highly Atroposelective Synthesis of Nonbiaryl Naphthalene-1,2-Diamine N-C Atropisomers through Direct Enantioselective C-H Amination. Nature Communications, 10, 3063. https://doi.org/10.1038/s41467-019-10858-x
|
[23]
|
Bonne, D. and Rodriguez, J. (2017) Enantioselective Syntheses of Atropisomers Featuring a Five-Membered Ring. Chemical Communications, 53, 12385-12393. https://doi.org/10.1039/C7CC06863H
|
[24]
|
Wencel-Delord, J., Panossian, A., Leroux, F.R. and Colobert, F. (2015) Recent Advances and New Concepts for the Synthesis of Axially Stereoenriched Biaryls. Chemical Society Reviews, 44, 3418-3430. https://doi.org/10.1039/C5CS00012B
|
[25]
|
LaPlante, S.R., Edwards, P.J., Fader, L.D., Jakalian, A. and Hucke, O. (2011) Revealing Atropisomer Axial Chirality in Drug Discovery. ChemMedChem, 6, 505-513. https://doi.org/10.1002/cmdc.201000485
|
[26]
|
Laplante, S.R., et al. (2011) Assessing Atropisomer Axial Chirality in Drug Discovery and Development. Journal of Medicinal Chemistry, 54, 7005-7022. https://doi.org/10.1021/jm200584g
|
[27]
|
Takahashi, H., et al. (2011) Atropisomerism Observed in Indometacin Derivatives. Organic Letters, 13, 760-763. https://doi.org/10.1021/ol103008d
|
[28]
|
Yu, F.H. and Catterall, W.A. (2003) Overview of the Voltage-Gated Sodium Channel Family. Genome Biology, 4, 207. https://doi.org/10.1186/gb-2003-4-3-207
|
[29]
|
Catterall, W.A., Goldin, A.L. and Waxman, S.G. (2005) International Union of Pharmacology. XLVII. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels. Pharmacological Reviews, 57, 397-409. https://doi.org/10.1124/pr.57.4.4
|
[30]
|
Lampert, A., Dib-Hajj, S.D., Tyrrell, L. and Waxman, S.G. (2006) Size Matters: Erythromelalgia Mutation S241T in NaV1.7 Alters Channel Gating. The Journal of Biological Chemistry, 281, 36029-36035. https://doi.org/10.1074/jbc.M607637200
|
[31]
|
Fertleman, C.R., et al. (2006) SCN9A Mutations in Paroxysmal Extreme Pain Disorder: Allelic Variants Underlie Distinct Channel Defects and Phenotypes. Neuron, 52, 767-774. https://doi.org/10.1016/j.neuron.2006.10.006
|
[32]
|
Han, C., et al. (2012) NaV1.7-Related Small Fiber Neuropathy: Impaired Slow-Inac- tivation and DRG Neuron Hyperexcitability. Neurology, 78, 1635-1643. https://doi.org/10.1212/WNL.0b013e3182574f12
|
[33]
|
Cox, J.J., et al. (2006) An SCN9A Channelopathy Causes Congenital Inability to Experience Pain. Nature, 444, 894-898. https://doi.org/10.1038/nature05413
|
[34]
|
Goncalves, T.C., Benoit, E., Partiseti, M. and Servent, D. (2018) Corrigendum: The NaV1.7 Channel Subtype as an Antinociceptive Target for Spider Toxins in Adult Dorsal Root Ganglia Neurons. Frontiers in Pharmacology, 9, 1241. https://doi.org/10.3389/fphar.2018.01241
|
[35]
|
Goncalves, T.C., Benoit, E., Partiseti, M. and Servent, D. (2018) The NaV1.7 Channel Subtype as an Antinociceptive Target for Spider Toxins in Adult Dorsal Root Ganglia Neurons. Frontiers in Pharmacology, 9, 1000. https://doi.org/10.3389/fphar.2018.01000
|
[36]
|
Hameed, S. (2019) NaV1.7 and Nav1.8: Role in the Pathophysiology of Pain. Molecular Pain, 15. https://doi.org/10.1177/1744806919858801
|
[37]
|
Tanaka, B.S., et al. (2017) Gain-of-Function Mutation of a Voltage-Gated Sodium Channel NaV1.7 Associated with Peripheral Pain and Impaired Limb Development. The Journal of Biological Chemistry, 292, 9262-9272. https://doi.org/10.1074/jbc.M117.778779
|
[38]
|
Meents, J.E., et al. (2019) The Role of NaV1.7 in Human Nociceptors: Insights from Human Induced Pluripotent Stem Cell-Derived Sensory Neurons of Erythromelalgia Patients. Pain, 160, 1327-1341. https://doi.org/10.1097/j.pain.0000000000001511
|
[39]
|
Weiss, M.M., et al. (2017) Sulfonamides as Selective NaV1.7 Inhibitors: Optimizing Potency and Pharmacokinetics While Mitigating Metabolic Liabilities. Journal of Medicinal Chemistry, 60, 5969-5989. https://doi.org/10.1021/acs.jmedchem.6b01851
|
[40]
|
Graceffa, R.F., et al. (2017) Sulfonamides as Selective NaV1.7 Inhibitors: Optimizing Potency, Pharmacokinetics, and Metabolic Properties to Obtain Atropisomeric Quinolinone (AM-0466) that Affords Robust in Vivo Activity. Journal of Medicinal Chemistry, 60, 5990-6017. https://doi.org/10.1021/acs.jmedchem.6b01850
|
[41]
|
Kornecook, T.J., et al. (2017) Pharmacologic Characterization of AMG8379, a Potent and Selective Small Molecule Sulfonamide Antagonist of the Voltage-Gated Sodium Channel NaV1.7. Journal of Pharmacology and Experimental Therapeutics, 362, 146-160. https://doi.org/10.1124/jpet.116.239590
|