Perfect Entanglement Transport in Quantum Spin Chain Systems
Sujit Sarkar
DOI: 10.4236/jqis.2011.13014   PDF    HTML     4,810 Downloads   9,626 Views   Citations


We propose a mechanism for perfect entanglement transport in anti-ferromagnetic (AFM) quantum spin chain systems with modulated exchange coupling and also for the modulation of on-site magnetic field. We use the principle of adiabatic quantum pumping process for entanglement transfer in the spin chain systems. We achieve the perfect entanglement transfer over an arbitrarily long distance and a better entanglement transport for longer AFM spin chain system than for the ferromagnetic one. We explain analytically and physically—why the entanglement hops in alternate sites. We find the condition for blocking of entanglement transport even in the perfect pumping situation. Our analytical solution interconnects quantum many body physics and quantum information science.

Share and Cite:

S. Sarkar, "Perfect Entanglement Transport in Quantum Spin Chain Systems," Journal of Quantum Information Science, Vol. 1 No. 3, 2011, pp. 105-110. doi: 10.4236/jqis.2011.13014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. J. Skineer, et al., “Hydrogenic Spin Quantum Computing in Silicon: A Digital Approach,” Physical Review Letters, Vol. 90, No. 8, 2003, pp. 087901-087904. doi:10.1103/PhysRevLett.90.087901
[2] A. Zeilinger, “Experiment and the Foundation of Quantum Physics,” Reviews of Modern Physics, Vol. 71, No. 2, 1999, pp. S288-S297.
[3] A. Rauschenbeutel, et al., “Step by Step Engineered Multiparticle,” Science, Vol. 288, No. 5473, 2000, pp. 2024- 2029. doi:10.1126/science.288.5473.2024
[4] C. A. Sackett, et al., “Experimental Entanglement of Four Particle,” Nature, Vol. 404, No. 6775, 2000, pp. 256-258. doi:10.1038/35005011
[5] M. Bayer, et al., “Coupling and Entanglement of Quantum States in Quantum Dot Molecules,” Science, Vol. 291, No. 5503, 2001, pp. 451-453. doi:10.1126/science.291.5503.451
[6] F. Plastina, R. Fazio and G. M. Palma, “Macroscopic Entanglement in Josephson Nanocircuits,” Physical Review B, Vol. 64, No. 11, 2001, pp. 113306-113310. doi:10.1103/PhysRevB.64.113306
[7] S. Bose, “Quantum Computation through Unmodulated Spin Chain,” Physical Review Letters, Vol. 91, No. 20, 2003, pp. 207901-207904. doi:10.1103/PhysRevLett.91.207901
[8] V. Subrahmanyam, “Entanglement Dynamics and Quantum State Transport in Spin Chain,” Physical Review A, Vol. 69, No. 3, 2004, pp. 034304-034307.
[9] A. Kay, “Unifying Quantum State Transfer and State Amplification,” Physical Review Letters, Vol. 98, No. 1, 2007, pp. 010501-010504. doi:10.1103/PhysRevLett.98.010501
[10] T. J. Osborne and N. Linden, “Propagation of Quantum Information through a Spin System,” Physical Review A, Vol. 69, No. 5, 2004, pp. 052315-052320. doi:10.1103/PhysRevA.69.052315
[11] L. Amico, et al., “Scaling of Entanglement Close to a Quantum Phase Transition,” Nature, Vol. 416, No. 6881, 2002, pp. 608-610. doi:10.1038/416608a
[12] A. Bayat and V. Karimipour, “Thermal Effect on Quantum Communication through Spin Chain,” Physical Review A, Vol. 71, No. 4, 2005, pp. 042330-042336. doi:10.1103/PhysRevA.71.042330
[13] L. C. Venuti, et al., “Long-Distance Entanglement in Spin System,” Physical Review Letters, Vol. 96, No. 24, 2006, pp. 247206-247209. doi:10.1103/PhysRevLett.96.247206
[14] O. Romero-Isart, K. Eckert and A. Sanpera, “Quantum State Transfer in Spin-1 Chain,” Physical Review A, Vol. 75, No. 5, 2007, pp. 050303-050306. doi:10.1103/PhysRevA.75.050303
[15] K. Eckert, O. Romero-Isart and A. Sanpera, “Efficient Quantum State Transfer in Spin Chain via Adiabatic Passage,” New Journal of Physics, Vol. 9, No. 5, 2007, pp. 155-173. doi:10.1088/1367-2630/9/5/155
[16] V. Srinivasa, J. Levy and C. S. Hellberg, “Flying Spin Qubit,” Exchange Organizational Behavior Teaching Journal, 2006, pp. 1-13.
[17] M. J. Hartmann, et al., “Excitations and Entanglement Transfer versus Spectral Gap,” New Journal of Physics, Vol. 8, No. 6, 2006, pp. 94-108. doi:10.1088/1367-2630/8/6/094
[18] L. Amico, et al., “Dynamics of Entanglement in One- Dimensional Spin Systems,” Phys. Rev. A, Vol. 69, No. 2, 2004, pp. 022304-022327. doi:10.1103/PhysRevA.69.022304
[19] C. Di. Franco, et al., “Perfect State Transfer of Spin Chain without State Initialization,” Physical Review Letters, Vol. 101, No.23, 2008, pp. 230502-230503. doi:10.1103/PhysRevLett.101.230502
[20] F. Plastina, et al., “Local Control of Entanglement in Spin Chain,” Physical Review Letters, Vol. 99, No. 17, 2007, pp. 177210-177213. doi:10.1103/PhysRevLett.99.177210
[21] M. Horodecki, et al., “General Teleporation Channel, Singlet Fraction and Quasidistillation,” Physical Review A, Vol. 60, No. 3, 1999, pp. 1888-1898.
[22] A. Bayat and S. Bose, “Information Transferring Ability of the Different Phases of a Finite XXZ Spin Chain,” Physical Review A, Vol. 81, No. 1, 2008, pp. 1-11.
[23] C. F. Hirjibehedin, et al., “Spin Coupling in Engineered Atomic Structures,” Science, Vol. 312, No. 5776, 2006, pp. 1021-1025. doi:10.1126/science.1125398
[24] D. J. Thouless, “Quantization of Particle Transport,” Physical Review B, Vol. 27, No. 10, 1983, pp. 6083-6087. doi:10.1103/PhysRevB.27.6083
[25] Q. Niu and D. J. Thouless, “Quantized Adiabatic Charge Transport in the Presence of Substrate Disorder and Many-Body Interaction,” Journal of Physics A: Mathematical and General, Vol. 17, No. 12, 1984, pp. 2453- 2462. doi:10.1088/0305-4470/17/12/016
[26] M. V. Berry, “Quantal Phase Factor Accompaying Adiabatic Charges,” Proceedings of the Royal Society A, Vol. 392, No. 1802, 1984, pp. 45-57. doi:10.1098/rspa.1984.0023
[27] R. Shindou, “Quantum Spin Pump in S = 1/2 Antiferromagnetic Chain Holonomy of Phase Operators in Sine- Gordon Theory,” Journal of the Physics Society Japan, Vol. 74, No. 4, 2005, pp. 1214-1223. doi:10.1143/JPSJ.74.1214
[28] J. E. Avron, A. Raveh and B. Zur, “Adiabatic Quantum Transport in Multiple Connected System,” Reviews of Modern Physics, Vol. 60, No. 4, 1988, pp. 873-915. doi:10.1103/RevModPhys.60.873
[29] T. Giamarchi, “Quantum Physics in One Dimension,” Clarendon Press, London, 2004.
[30] . field corresponds to the quantum fluctuations (boson) of spin.
[31] P. Sharma and C. Chamon, “Quantum Pump for Spin and Charge Transport in a Luttinger Liquid,” Physical Review Letters, Vol. 87, No. 9, 2001, pp. 96401-96405. doi:10.1103/PhysRevLett.87.096401
[32] S. Sarkar and C. D. Hu, “Quantum Spin Pumping at a Fractionally Quantized Magnetization State for a System with Competing Exchange Interactions,” Physical Review B, Vol. 77, No. 6, 2008, pp. 064413-064418. doi:10.1103/PhysRevB.77.064413
[33] C. H. Bennett, et al., “Mixed State Entanglement and Quantum Error Correction,” Physical Review A, Vol. 54, No. 5, 1996, pp. 3824-3851. doi:10.1103/PhysRevA.54.3824
[34] E. Schrodinger, “Discussion of Probability Relation between Separated System,” Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 31, No. 4, 1935, pp. 555-563.
[35] J. S. Bell, “On the Einstein-Podolsky-Rosen Paradox,” Physics, Vol. 1, No. 3, 1964, pp. 195-202.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.