[1]
|
A. T. Layton and M. L. Minion, “Conservative Multi- Implicit Spectral Deferred Correction Methods for Re- acting Gas Dynamics,” Journal of Computational Physics, Vol. 194, No. 2, 2004, pp. 697-714.
doi:10.1016/j.jcp.2003.09.010
|
[2]
|
S. K. Godunov, “Finite Difference Methods for Numeri- cal Computations of Discontinuous Solutions of Equa- tions of Fluid Dynamics,” Math Sbornik, Vol. 47, 1959, pp. 271-306.
|
[3]
|
B. van Leer, “Toward the Ultimate Conservative Differ- ence Scheme. II. Monotonicity and Conservation Com- bined in a Second Order Scheme,” Journal of Computa- tional Physics, Vol. 14, No. 4, 1974, pp. 361-370.
doi:10.1016/0021-9991(74)90019-9
|
[4]
|
J. B. Goodman and R. J. LeVeque, “A Geometric Approach to High Resolution TVD Schemes,” SIAM Jour- nal of Numerical Analysis, Vol. 25, No. 2, 1988, pp. 268- 284. doi:10.1137/0725019
|
[5]
|
P. Colella, “A Direct Eulerian MUSCL Scheme for Gas Dynamics,” SIAM Journal on Scientific Computing, Vol. 6, No. 1, 1985, pp. 104-117. doi:10.1137/0906009
|
[6]
|
S. F. Davis, “Simplified Second-Order Godunov-Type Me- thods,” SIAM Journal on Scientific Computing, Vol. 9, No. 3, 1988, pp. 445-473. doi:10.1137/0909030
|
[7]
|
P. Colella and P. R. Woodward, “The Piecewise Para- bolic Method (PPM) for Gas-Dynamics Simulations,” Journal of Computational Physics, Vol. 54, No. 1, 1984, pp. 174-201. doi:10.1016/0021-9991(84)90143-8
|
[8]
|
C. Shu and S. Osher, “Efficient Implementation of Essen- tially Non-Oscillatory Shock Capturing Schemes II,” Jour- nal of Computational Physics, Vol. 83, No. 1, 1989, pp. 32-78. doi:10.1016/0021-9991(89)90222-2
|
[9]
|
X. Liu, S. Osher, and T. Chan, “Weighted Essentially Non- Oscillatory Schemes,” Journal on Scientific Computing, Vol. 115, No. 1, 1994, pp. 200-212.
doi:10.1006/jcph.1994.1187
|
[10]
|
A. Harten, “High Resolution Schemes for Hyperbolic Con- servation Laws,” Journal of Computational Physics, Vol. 49, No. 3, 1983, pp. 357-393.
doi:10.1016/0021-9991(83)90136-5
|
[11]
|
J. Boris and D. Book, “Flux Corrected Transport 1: SHASTA, a Fluid Transport Algorithm That Works,” Journal of Computational Physics, Vol. 11, No. 1, 1973, pp. 38-69. doi:10.1016/0021-9991(73)90147-2
|
[12]
|
S. Serna, “A Class of Extended Limiters Applied to Pie- cewise Hyperbolic Methods,” SIAM Journal on Scientific Computing, Vol. 28, No. 1, 2006, pp. 123-140.
doi:10.1137/040611811
|
[13]
|
R. Artebrant and H. J. Schroll, “Conservative Logarith- mic Reconstructions and Finite Volume Methods,” SIAM Journal on Scientific Computing, Vol. 27, No. 1, 2005, pp. 294-314. doi:10.1137/03060240X
|
[14]
|
R. Artebrant and H. J. Schroll, “Limiter-Free Third Order Logarithmic Reconstruction.” SIAM Journal on Scientific Computing, Vol. 28, No. 1, 2006, pp. 359-381.
doi:10.1137/040620187
|
[15]
|
H. Q. Yang and A. J. Przekwas, “A Comparative Study of Advanced Shock-Capturing Schemes Applied to Burgers’ Equation,” Journal on Scientific Computing, Vol. 102, No. 1, 1992, pp. 139-159.
doi:10.1016/S0021-9991(05)80012-9
|
[16]
|
R. Liska and B. Wendroff, “Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations,” Technical Report, Los Alamos Laboratory, 22 November 2001.
|
[17]
|
P. Woodward and P. Colella, “The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks,” Journal on Scientific Computing, Vol. 54, No. 1, 1984, pp. 115-173. doi:10.1016/0021-9991(84)90142-6
|
[18]
|
R. J. Leveque, “Finite Volume Methods for Hyperbolic Pro- blems,” Cambridge University Press, Cambridge, 2003.
|
[19]
|
R. Hannappel, T. Hauser and R. Friedrich, “A Compari- son of ENO and TVD Schemes for the Computation of Shock-Turbulence Interaction,” Journal of Computational Physics, Vol. 121, No. 1, 1995, pp. 176-184.
doi:10.1006/jcph.1995.1187
|
[20]
|
S. Y. Kadioglu, R. Klein and M. L. Minion, “A Fourth- Order Auxiliary Variable Projection Methods for Zero Mach-Number Gas Dynamics,” Journal on Scientific Com- puting, Vol. 227, No. 3, 2008, pp. 2012-2043.
doi:10.1016/j.jcp.2007.10.008
|
[21]
|
C. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations,” Printice-Hall, Delhi, 1971.
|
[22]
|
E. Hairer, S. P. Norsett, and G. Wanner, “Solving Ordi- nary Differential Equations I, Non-Stiff Problems,” Sprin- ger-Verlag, New York, 1993.
|
[23]
|
J. D. Lambert, “Numerical Methods for Ordinary Differ- ential Equations,” Wiley, Hoboken, 1991.
|
[24]
|
A. Dutt, L. Greengard, and V. Rokhlin, “Spectral Defer- red Correction Methods for Ordinary Differential Equa- tions,” Bit Numerical Mathematics, Vol. 40, No. 2, 2000, pp. 241-266. doi:10.1023/A:1022338906936
|
[25]
|
M. L. Minion, “Semi-Implicit Projection Methods for In- compressible Flow Based on Spectral Deferred Correc- tions,” Applied Numerical Mathematics, Vol. 48, No. 3-4, 2004, pp. 369-387. doi:10.1016/j.apnum.2003.11.005
|
[26]
|
A. T. Layton and M. L. Minion, “Implications of the Choice of Quadrature Nodes for Picard Integral Deferred Corrections Methods for Ordinary Differential Equa- tions,” Bit Numerical Mathematics, Vol. 45, No. 2, 2005, pp. 341-373. doi:10.1007/s10543-005-0016-1
|
[27]
|
B. E. McDonald and J. Ambrosiano, “High-Order Up- wind Flux Correction Methods For Hyperbolic Conserva- tion Laws,” Journal on Scientific Computing, Vol. 56, No. 3, 1984, pp. 448-460. doi:10.1016/0021-9991(84)90106-2
|
[28]
|
G. Sod, “A Survey of Several Finite Difference Methods for Systems of Nonlinear Conservation Laws,” Journal on Scientific Computing, Vol. 27, No. 1, 1978, pp. 1-31.
doi:10.1016/0021-9991(78)90023-2
|
[29]
|
J. O. Langseth and R. J. LeVeque, “A Wave Propagation Method for Three-Dimensional Hyperbolic Conservation Laws,” Journal on Scientific Computing, Vol. 165, No. 1, 2000, pp. 126-166. doi:10.1006/jcph.2000.6606
|