[1]
|
Radcliff, C.W. and Foort, J. (1961) The patellar-tendon-bearing below-knee prosthesis. Biomechanics laboratory, University of California, Berkeley.
|
[2]
|
Radcliff C.W. (1955) Functional considerations in the fitting of above-knee prostheses. Artificial Limb, 2, 35-60.
|
[3]
|
Jia, X., Zhang, M. and Lee, W.C.C. (2004) Load transfer mechanics between trans-tibial prosthetic socket and residual limb—dynamic effects. Journal of Biomechanics, 37, 1371-1377. doi:10.1016/j.jbiomech.2003.12.024
|
[4]
|
Lee, W.C.C., Zhang, M., Jia, X.H. and Cheung J.T.M. (1961) Finite element modelling of the contact interface between trans-tibial residual limb and prosthetic socket. Medical Engineering & Physics, 26, 655-662.
doi:10.1016/j.medengphy.2004.04.010
|
[5]
|
Faustini, M.C., Neptune, R.R. and Crawford, R.H. (2006) The quasisstatic response of compliant prosthetic sockets for transtibial amputees using finite element methods. Medical Engineering & Physics, 28, 114-121.
doi:10.1016/j.medengphy.2005.04.019
|
[6]
|
Saunders, M.M., Schwentker, E.P., Kay, DB, Bennett, G., Jacobs, C.R., Verstraete, M.C. and Njus, G.O. (2003) Finite element analysis as a tool for parametric prosthetic foot design and evaluation. Technique development in the solid ankle cushioned heel (SACH). Computer Methods in Biomechics and Biomedical Engineering, 6, 75-87. doi:10.1080/1025584021000048974
|
[7]
|
Geil, M.D. (2002) An iterative method for viscoelastic modeling of prosthetic feet. Journal of Biomechanics, 35, 1405-1410. doi:10.1016/S0021-9290(02)00169-0
|
[8]
|
Zhang, M. and Roberts, V.C. (1993) Development of a nonlinear finite element model for analysis of stump/ socket interface stresses in below-knee amputee. In: Held, K.D., Brebbia, C.A., Ciskowski, R.D. and Power, H., Eds., Computational biomedicine, Computational Mechanics Pub., Southampton, 209-214.
|
[9]
|
Steege, J.W. and Childress, DS. (1988) Finite element prediction of pressure at the below-knee socket interface. Report of ISPO Workshop on CAD/CAM in Prosthetics and Orthotics, 71-82.
|
[10]
|
Silver-Thorn, M.B. and Childress, D.C. (1996) Parametric analysis using the finite element method to investigate prosthetic interface stresses for persons with trans-tibia amputation. Journal of Rehabilitation Research and Develomet, 33, 227-238.
|
[11]
|
Zhang, M., Mak, A., Roberts VC. (1998) Finite element modeling of residual lower-limb in a prosthetic socket: a survey of the development in the first decade. Medical Engineering & Physics, 20, 360-373.
doi:10.1016/S1350-4533(98)00027-7
|
[12]
|
Zhang, M., Lord, M., Turner-Smith, A.R. and Roberts, V.C. (1995) Development of a non linear finite element modeling of the below-knee prosthetic socket interface. Medical Engineering & Physics, 17, 559-566.
doi:10.1016/1350-4533(95)00002-5
|
[13]
|
Zachariah, S.G. and Sanders, J.E. (2000) Finite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact. Journal of Biomechanics, 33, 895-904.
doi:10.1016/S0021-9290(00)00022-1
|
[14]
|
Torres-Moreno, R., Jones, D., Solomonidis, S.E. and Mackie, H. (1999) Magnetic resonance imaging of residual soft tissues for computer-aided technology applications in prosthetics—A case study. Journal of Prosthet Orthot, 11, 6-11. doi:10.1097/00008526-199901110-00003
|
[15]
|
Lee, V.S.P., Solomonidis, S.E., Spence, W.D. and Paul, J.P. (1994) A study of the biomechanics of the residual limb/prosthesis interface in trans-femoral amputees. Proceedings of 8th Word Congress of ISPO, Melbourne, 79.
|
[16]
|
Zhang, M. and Mak, A.F.T. (1996) A finite element analysis of the load transfer between an above-knee residual limb and its prosthetic socket-roles of interfacial friction and distal-end boundary conditions. IEEE Transactions on Rehabilitation Engineering, 4, 337-346.
doi:10.1109/86.547935
|
[17]
|
Zhang, M. and Roberts, C. (2000) Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket. Medical Engineering & Physics, 22, 607-612.
doi:10.1016/S1350-4533(00)00079-5
|
[18]
|
Lee, W.C.C., Zhang, M. and Mak, A.F. (1961) Regional differences in pain threshold and tolerance of the transtibial residual limb: Including the effects of age and interface material. Archives of Physical Medicine and Rehabilitation, 86, 641-650.
doi:10.1016/j.apmr.2004.08.005
|
[19]
|
Faustini, M.C., Crawford, R.H. and Neptune, R.R.J. (2005) Design and analysis of orthogonally compliant features for local contact pressure relief in transtibial prostheses. Journa of Biomedical Engineering, 127, 946-955.
doi:10.1115/1.2049331
|
[20]
|
Portnoy, S., Yarnitzky, G., Yizhar, Z., Kristal, A., Oppenheim, U., Siev-Ner, I. and Gefen, A. (2007) Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: A new tool for prosthetic fitting. Annals of Biomedical Engineering, 35, 120- 135.
|
[21]
|
Sewell, P., Vinney, J., Noroozi, S., Amali, R. and Andrews, S. (2005) A photoelastic clinical study of the static load distributionat the stump/socket interface of PTB sockets. Prosthetics and Orthotics International, 29, 291-302.
doi:10.1080/03093640500465153
|
[22]
|
Chen, N.Z., Lee, W.C.C. and Zhang, M. (2006) A robust design procedure for improvement of quality of lower- limb prosthesis. Bio-Medical Materials and Engineering, 16, 309-318.
|
[23]
|
Faustini, M.C., Neptune, R.R., Crawford R.H., Rogers W.E. and Bosker G. (2006) An experimental and theoretical framework for manufacturing prosthetic sockets for transtibial amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14, 304-310.
|
[24]
|
Mtalo, L.B. (2000) Appropriate prosthetic prescription. The ISPO Consensus Conference on Appropriate Ortho- paedic Technology for Low-Income Countries, Moshi, 18-22 September 2000.
|
[25]
|
National Institute for the Orthopaedically Handicapped, Kolkata, India. http://www.nioh.in
|
[26]
|
Jensen, J.S., Craig, J.G., Mtalo, L.B. and Zelaya, C.M. (2004) Clincial field follow up of high density polyethylene (HDPE)-Jaipur Prosthesis technology for transfe-moral amputtee. Journal of Prosthetics and Orthotics, 28, 152-166. doi:10.1080/03093640408726700
|
[27]
|
COMET 250, QC Inspection Services, Incl (HQ). Burnsville, USA.
|
[28]
|
Central Mechanical Engineering Research Institute, Durgapur, India. http://www.cmeri.res.in
|
[29]
|
Kalen, V., Adler, N. and Bleck, E.E. (1986) Electromyography of idiopathic toe walking. Journal of Pediatric Orthopaedics, 6, 31-33.
doi:10.1097/01241398-198601000-00006
|
[30]
|
Lyons, K., Perry, J., Gronley, J., Barnes, L. and Antonelli, D. (1983) Timing and relative intensity of hip extensor and abductor muscle action during level and stair ambulation: an EMG Study. Journal of the American Physical Therrpy Association, 63, 1597-1605.
|
[31]
|
Mann, R.A.and Inman, V.T. (1964) Phasic activity of intrinsic muscles of the foot. Journal of Bone and Joint Surgery, 46, 469-481.
|
[32]
|
Moxham, J., Edwards, R.H.T., Aubier, M, DeTroyer, A, Farkas, G., Macklem, P.T. and Roussos, C. (1982) Changes in EMG power spectrum (high-to-low ratio) with force fatigue in humans. Journal of Applied Physiology, 53, 1094-1099.
|
[33]
|
Hahl, J. and Taya, M. (2000) Experimental and numerical predictions of the ultimate strength of a low-cost composite transtibial prosthesis. Journal of Rehabilitation Research and Developemt, 37, 405-413.
|
[34]
|
Silver-Thron, M.B. (1991) Prediction and experimental verification of residual limb/prosthetic socket interface pressure for below knee amputees (Dissertation). Northwestern University, Evanstoon.
|
[35]
|
Zhang, M., Turner-Smith, A.R., Tanner, A. and Robert, V.C. (1998) Clinical investigation of a pressure and shear stress on the transtibial stump with prosthesis. Medical Engineering & Physics, 20, 188-198.
doi:10.1016/S1350-4533(98)00013-7
|
[36]
|
Buis, A.W.P. and Convery, P. (1998) Conventional patellar-tendon-bearing (PTB) socket/stump interface dynamic pressure distribution recorded during the prosthetic stance phase of gait of a trans-tibial amputee. Prosthetic Orthotic International, 22, 193-198.
|
[37]
|
Zahedi, S. (year) Atlas of prosthetics. 3rd Edition, Lower Limb Prosthetic Research in 21st Century.
|
[38]
|
Gibson, R.F. (1994) Principles of composite materials mechanics. McGraw-Hill, New York.
|
[39]
|
Hamill, J. and Knutzen, C.N. (1961) Biomechanical basis of human movement. 2nd Edition, William & Wilkins Publisher, Philadelphia, 237.
|
[40]
|
Lee, W.C.C., Zhang, M., Boone, D.A. and Contoyannis, B. (2004) Finite-element analysis to determine effect of monolimb flexibility on structural strength and interaction between residual limb and prosthetic socket. Journal of Rehabilitation Research & Develomet, 41, 775-786.
doi:10.1682/JRRD.2004.01.0003
|
[41]
|
Giancoli, D. (2000) Physics for scientists & engineers. 3rd Edition, Prentice Hall, Upper Saddle River.
|