[1]
|
Strivatsan, T.S., Vasudevan, S., Park, L. and Lederich, R.J. (2008) The Quasi-Static Deformation and Final Fracture Behaviour of Aluminum Alloy 2219. Materials Science and Engineering: A, 497, 270-277.
https://doi.org/10.1016/j.msea.2008.07.033
|
[2]
|
Alexopoulos, N.D., Migklis, E., Stylianos, A. and Myriounis, D.P. (2013) Fatigue Behaviour of the Aeronautical Al-Li (2198) Aluminum Alloy under Constant Amplitude Loading. International Journal of Fatigue, 56, 95-105.
https://doi.org/10.1016/j.ijfatigue.2013.07.009
|
[3]
|
Guerin, M., Alexis, J., Andrieu, E., Blanc, C. and Odemer, G. (2015) Corrosion-Fatigue Lifetime of Aluminium-Copper-Lithium Alloy 2050 in Chloride Solution. Materials & Design, 87, 681-692. https://doi.org/10.1016/j.matdes.2015.08.003
|
[4]
|
Sayuti, M., Ahmed, A.D. and Handi, S.M. (2013) An Investigation of Optimum SiO2 Nanolubrication Parameters in End Milling of Aerospace Al6061-T6 Alloy. International Journal of Advanced Manufacturing Technology, 67, 833-849.
https://doi.org/10.1007/s00170-012-4527-z
|
[5]
|
Li, H. and Lu, X. (2015) Springback and Tensile Strength of 2A97 Aluminium Alloy during Age Forming. Transactions of Nonferrous Metals Society of China, 25, 1043-1049. https://doi.org/10.1016/S1003-6326(15)63696-2
|
[6]
|
Bobbili, R., Madhu, V. and Gogia, A.K. (2016) Tensile Behaviour of Aluminium 7017 Alloy at Various Temperatures and strain Rates. Journal of Materials Research and Technology, 5, 190-197. https://doi.org/10.1016/j.jmrt.2015.12.002
|
[7]
|
Pourbahari, B. and Emamy, M. (2016) Effects of La Intermetallics on the Structure and Tensile Properties of Thin Section Gravity Die-Cast A 357 Al Alloy. Materials & Design, 94, 111-120. https://doi.org/10.1016/j.matdes.2016.01.039
|
[8]
|
Cadoni, E., Dotta, M., Forni, D. and Kaufmann, H. (2017) Tensile Behavior of Commercial Aluminium Alloys Used in Armour Applications at High Strain Rate. Procedia Engineering, 197, 168-175. https://doi.org/10.1016/j.proeng.2017.08.093
|
[9]
|
Graham, W.R., Hall, C.A. and Morales, M.V. (2014) The Potential of Future Aircraft Technology for Noise and Pollutant Emissions Reduction. Transport Policy, 34, 36-51. https://doi.org/10.1016/j.tranpol.2014.02.017
|
[10]
|
Tsai, W., Chang, Y., Li, S., Chei, H. and Chu, P. (2014) A Green Approach to the Weight Reduction of Aircraft Cabins. Journal of Air Transport Management, 40, 65-77. https://doi.org/10.1016/j.jairtraman.2014.06.004
|
[11]
|
Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., Cresko, J. and Masanet, E. (2016) Energy and Emissions Saving of Additive Manufacturing: The Case of Lightweight Aircraft Components. Journal of Cleaner Production, 135, 1559-1570. https://doi.org/10.1016/j.jclepro.2015.04.109
|
[12]
|
Bruekner, J.K. and Abreu, C. (2017) Airline Fuel Usage and Carbon Emissions: Determining Factors. Journal of Air Transport Management, 62, 10-17.
https://doi.org/10.1016/j.jairtraman.2017.01.004
|
[13]
|
Xue, Y., Kadiri, H.E., Horsfemeyer, M.F., Jordan, J.B. and Weiland, H. (2007) Micromechanism of Multistage Fatigue Crack Growth in a High-Strength Aluminum Alloy. Acta Materialia, 55, 1975-1984. https://doi.org/10.1016/j.actamat.2006.11.009
|
[14]
|
Gupta, V.K. and Agnew, S.R. (2011) Fatigue Crack Surface Crystallography near Crack Initiating Particle Clusters in Precipitation Hardened Legacy and Modern Al-Zn-Mg-Cu Alloys. International Journal of Fatigue, 33, 1159-1174.
https://doi.org/10.1016/j.ijfatigue.2011.01.018
|
[15]
|
Carpio, F.J., Araujo, D., Pacheco, F.J., Mendez, D., Garcia, A.J., Villar, M.P., Garcia, R., Jimenez, D. and Rubio, L. (2003) Fatigue Behaviour of Laser Machined Aluminium Alloy. Applied Surface Science, 208-209, 194-198.
https://doi.org/10.1016/S0169-4332(02)01369-7
|
[16]
|
Desmukh, M.N., Pandey, R.K. and Mukhopadhyay, A.K. (2005) Fatigue Behavior of 7010 Aluminum Alloy Containing Scandium. Scripta Materialia, 52, 645-650.
https://doi.org/10.1016/j.scriptamat.2004.11.018
|
[17]
|
Wang, Q.Y., Kawagoishi, N. and Chen, Q. (2006) Fatigue and Fracture Behaviour of Structural Al-Alloys up to Very Long Life Regimes. International Journal of Fatigue, 28, 1572-1576. https://doi.org/10.1016/j.ijfatigue.2005.09.017
|
[18]
|
Ceschini, L., Morri, A. and Sambogna, G. (2008) The Effect of Hot Isostatic Pressing on the Fatigue Behaviour of Sand-Cast A356-T6 and A204-T6 Aluminum Alloys. Journal of Materials Processing Technology, 204, 231-238.
https://doi.org/10.1016/j.jmatprotec.2007.11.067
|
[19]
|
Sharma, V.M.J., Kumar, K.S., Rao, B.N. and Pathak, S.D. (2011) Fatigue Crack Growth of AA2219 under Different Aging Conditions. Materials Science and Engineering: A, 528, 4040-4049. https://doi.org/10.1016/j.msea.2011.01.055
|
[20]
|
Zheng, Z.Q., Cai, B., Zhai, T. and Li, S.C. (2011) The Behavior of Fatigue Crack Initiation and Propagation in AA2524-T34 Alloy. Materials Science and Engineering: A, 528, 2017-2022. https://doi.org/10.1016/j.msea.2010.10.085
|
[21]
|
Ma, Y.E., Zhao, Z., Liu, B. and Li, W. (2013) Mechanical Properties and Fatigue Crack Growth Rates in Friction Stir Welded Nugget of 2198-T8 Al-Li Alloy Joints. Materials Science and Engineering: A, 569, 41-47.
https://doi.org/10.1016/j.msea.2013.01.044
|
[22]
|
Yan, L. and Fan, J. (2016) In-Situ SEM Study of Fatigue Crack Initiation and Propagation Behavior in 2524 Aluminum Alloy. Materials & Design, 110, 592-601.
https://doi.org/10.1016/j.matdes.2016.08.004
|
[23]
|
Shou, W.B., Yi, D.Q., Liu, H.Q., Tang, C., Sheu, F.H. and Wang, B. (2016) Effect of Grain Size on the Fatigue Crack Growth Behavior of 2524-T3 Aluminum Alloy. Archives of Civil and Mechanical Engineering, 16, 304-312.
https://doi.org/10.1016/j.acme.2016.01.004
|
[24]
|
Wu, W., Liu, Z., Bai, S., Li, F., Liu, M. and Wang, A. (2017) Anisotropy in Fatigue crack Propagation Behavior of Al-Cu-Li Alloy Thick Plate. Materials Characterization, 131, 440-449. https://doi.org/10.1016/j.matchar.2017.07.025
|
[25]
|
Ovono, D.O., Guillot, I. and Massinon, D. (2008) Study on Low-Cycle Fatigue Behaviours of the Aluminium Cast Alloys. Journal of Alloys and Compounds, 452, 425-431. https://doi.org/10.1016/j.jallcom.2006.11.052
|
[26]
|
Takahashi, Y., Shikama, T., Yoshihara, S., Aiupa, T. and Noguchi, H. (2012) Study on Dominant Mechanism of High-Cycle Fatigue Life in 6061-T6 Aluminum Alloy through Microanalyses of Microstructurally Small Cracks. Acta Materialia, 60, 2554-2567. https://doi.org/10.1016/j.actamat.2012.01.023
|
[27]
|
Sivaraj, P., Kanagarajau, D. and Balasubramanian, V. (2014) Fatigue Crack Growth Behaviour of Friction Stir Welded AA7075-T651 Aluminium Alloy Joints. Transactions of Nonferrous Metals Society of China, 24, 2459-2467.
https://doi.org/10.1016/S1003-6326(14)63371-9
|
[28]
|
Aboulkair, N.T., Maskery, I., Tuck, C., Ashcraft, I. and Everitt, N.M. (2016) Improving the Fatigue Behaviour of Selectively Laser Melted Aluminium Alloy. Influence of Heat Treatment and Surface Quality. Materials & Design, 104, 174-182.
https://doi.org/10.1016/j.matdes.2016.05.041
|
[29]
|
Szusta, J. and Sewryn, A. (2017) Experimental Study of the Low-Cycle Fatigue Life under Multiaxial Loading of Aluminum Alloy EN AW-2024-T3 at Elevated Temperatures. International Journal of Fatigue, 96, 28-42.
https://doi.org/10.1016/j.ijfatigue.2016.11.009
|
[30]
|
Wang, J.T., Zhang, Y.K., Chen, J.F., Zhou, J.Y., Luo, K.Y., Tan, W.S., Sun, L.Y. and Lu, Y.L. (2017) Effect of Laser Shock Peening on the High-Temperature Fatigue Performance of 7075 Aluminum Alloy. Materials Science and Engineering: A, 704, 459-468. https://doi.org/10.1016/j.msea.2017.08.050
|
[31]
|
Strivatsa, T.S., Kolar, D. and Magnusen, P. (2002) The Cyclic Fatigue and Final Fracture Behaviour of Aluminum Alloy. Materials & Design, 23, 129-139.
https://doi.org/10.1016/S0261-3069(01)00070-X
|
[32]
|
Giummarra, C., Bray, G.H. and Duquette, D.J. (2006) Fretting Fatigue in 2XXX Series Aerospace Aluminium Alloys. Tribology International, 39, 1206-1212.
https://doi.org/10.1016/j.triboint.2006.02.010
|
[33]
|
Fersini, D. and Pirondi, A. (2007) Fatigue Behavior of Al2024-T3 Friction Stir Welded Lap Joints. Engineering Fracture Mechanics, 74, 468-480.
https://doi.org/10.1016/j.engfracmech.2006.07.010
|
[34]
|
Malarvizhi, S., Raghukandan, K. and Viswanathan, N. (2008) Fatigue Behaviour of Post Weld Heat Treated Electron Beam Welded Aluminum Alloy Joints. Materials & Design, 29, 1562-1567. https://doi.org/10.1016/j.matdes.2007.11.005
|
[35]
|
Menzemer, C.C., Azzan, D. and Strivatsan, T.S. (2010) A Study of Fatigue and Fracture Response of Cantilevered Luminaire Structures Made from Aluminum Alloy 6063. Materials Science and Engineering: A, 527, 4680-4686.
https://doi.org/10.1016/j.msea.2010.03.085
|
[36]
|
Priet, B., Odemer, G., Blanc, C., Giffard, K. and Arurault, L. (2016) Effect of New Sealing Treatments on Corrosion Fatigue Lifetime of Anodized 2024 Aluminium Alloy. Surface and Coatings Technology, 307, 206-219.
https://doi.org/10.1016/j.surfcoat.2016.07.083
|
[37]
|
Fitzka, M. and Mayer, H. (2016) Constant and Variable Amplitude Fatigue Testing of Aluminum Alloy 2024-T351 with Ultrasonic and Servo-Hydraulic Equipment. International Journal of Fatigue, 91, 363-372.
https://doi.org/10.1016/j.ijfatigue.2015.08.017
|
[38]
|
Skorupa, M., Machniewicz, T., Skorupa, A. and Korbel, A. (2016) Fatigue Life Predictions for Riveted Lap Joints. International Journal of Fatigue, 94, 41-57.
https://doi.org/10.1016/j.ijfatigue.2016.09.007
|
[39]
|
Huang, Y., Li, H., Yang, X., Guan, Z., Li, Z. and Sun, Y. (2017) Improving the Fatigue Life of 2297-T87 Aluminum-Lithium Alloy Lugs by Cold Expansion, Interference Fitting, and their Combination. Journal of Materials Processing Technology, 249, 67-77. https://doi.org/10.1016/j.jmatprotec.2017.06.004
|
[40]
|
Xu, L., Yu, X., Hui, L. and Zhou S. (2017) Fatigue Prediction of Aviation Aluminium Alloy Based on Quantitative Pre-Corrosion Damage Analysis. Transactions of Nonferrous Metals Society of China, 27, 1353-1362.
https://doi.org/10.1016/S1003-6326(17)60156-0
|
[41]
|
Hemmouche, L., Fares, C. and Belouchrani, M.A. (2013) Influence of Heat Treatment and Anodization on Fatigue Life of 2017A Alloy. Engineering Failure Analysis, 35, 554-561. https://doi.org/10.1016/j.engfailanal.2013.05.003
|
[42]
|
Hao, H., Ye, D. and Chen, C. (2014) Strain Ratio Effects on Low-Cycles Fatigue Behaviour and Deformation Microstructure of 2124-T851 Aluminum Alloy. Materials Science and Engineering: A, 605, 151-159.
https://doi.org/10.1016/j.msea.2014.03.040
|
[43]
|
Fares, C., Hemmouche, L., Belouchrani, M.A., Amrouche, A., Chicot, D. and Puchi-Cabrera, E.S. (2015) Coupled Effects of Substrate Microstructure and Sulphuric Acid Anodizing on Fatigue Life of a 2017A Aluminum Alloy. Materials & Design, 86, 723-734. https://doi.org/10.1016/j.matdes.2015.07.120
|
[44]
|
Stanley, D., Twerbuch, J., Tan, T. and Anasori, B. (2016) Reconstruction of Fatigue Crack Growth in AA2024-T3 and AA2198-T8 Fastened Lap Joints. Theoretical and Applied Fracture Mechanics, 82, 33-50. https://doi.org/10.1016/j.tafmec.2015.06.006
|
[45]
|
Jayaraman, N., Prevey, P. and Mahoney, M. (2003) Fatigue Improvement of Aluminum Alloy FSW with Low Plasticity Burnishing. Proceedings of the 132nd TMS, San Diego, CA, 2-6 March 2003, 1-10.
|
[46]
|
Xu, W.F., Liu, J.H., Chen, D.L. and Luan, G.H. (2014) Low-Cycle Fatigue of a Friction Stir Welded 2219-T62 Aluminum Alloy at Different Welding Parameters and Cooling Conditions. International Journal of Advanced Manufacturing Technology, 74, 209-218. https://doi.org/10.1007/s00170-014-5988-z
|
[47]
|
ASTM E466-15 (2015) Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASTM International, West Conshohocken, PA.
|
[48]
|
ASTM E606/E606M-12 (2012) Standard Test Method for Strain-Controlled Fatigue Testing. ASTM International, West Conshohocken, PA.
|
[49]
|
Tang, K.K., Wu, H. and Berto, F. (2015) Fatigue Data Interpretation of 7075-T6 Al Sheets by Energy Density Factor in a Dual Scale Model. Theoretical and Applied Fracture Mechanics, 79, 98-104. https://doi.org/10.1016/j.tafmec.2015.06.012
|
[50]
|
Rambabu, P.R., Narasayya, C.V.A., Mohan, M.K. and Prasad, N.E. (2015) Mixed Mode (I/III) Fracture Behaviour of an Aerospace Grade Aluminium Alloy in Different Ageing Conditions. Materials Today: Proceedings, 2, 1741-1746.
https://doi.org/10.1016/j.matpr.2015.07.008
|