Selective Recognition and Detection of L-Aspartic Acid by Molecularly Imprinted Polymer in Aqueous Solution
Nazia Tarannum, Meenakshi Singh
DOI: 10.4236/ajac.2011.28105   PDF    HTML     5,373 Downloads   9,545 Views   Citations


Molecularly imprinted polymers selective for L-aspartic acid (LAA) have been prepared using the carboxy-betaine polymer bearing zwitterionic centres along the backbone. LAA is well known to promote good me-tabolism, treat fatigue and depression along with its significance in accurate age estimation in the field of forensic science and is an important constituent of ‘aspartame’, the low calorie sweetener. In order to study the intermolecular interactions in the prepolymerization mixture between the monomer and the template (LAA)/non-template (DAA), a computational approach was developed. It was based on the binding energy of the complex between the template and functional monomer. The results demonstrate that electrostatic in-teractions primarily guide the imprinting protocol. The MIP was able to selectively and specifically take up LAA from aqueous solution, human blood serum and certain pharmaceutical samples quantitatively. Hence, a facile, specific and selective technique to detect the amino acid, LAA in the presence of various interfer-rants, in different kinds of matrices is presented.

Share and Cite:

Tarannum, N. and Singh, M. (2011) Selective Recognition and Detection of L-Aspartic Acid by Molecularly Imprinted Polymer in Aqueous Solution. American Journal of Analytical Chemistry, 2, 909-918. doi: 10.4236/ajac.2011.28105.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Di. Pasquale, “Amino Acids and Proteins for the Athlete the Anabolic Edge,” CRC Press, Boca Raton, 1997.
[2] E. R. Waite, M. J. Collins, S. Ritz-Timme, H.-W. Schutz, C. Cattaneo and H. I. M. Borrman, “A Review of the Methodological Aspects of Aspartic Acid Racemisation analysis for Use in Forensic Science,” Forensic Science International, Vol. 103, No. 2, 1999, pp. 113-124. doi:S0379-0738(99)00081-X
[3] P. A. G. Cormack and A. Z. Elorza, “Molecularly Imprinted Polymers: Synthesis and Characterisation,” Journal of Chromatography B, Vol. 804, No. 1, 2004, pp. 173-182. doi:10.1016/j.jchromb.2004.02.013
[4] G. Baydemir, N. Bereli, M. Anda?, R. Say, I. Y. Galaev and A. Denizli, “Bilirubin Recognition via Molecularly Imprinted Supermacroporous Cryogels,” Colloids and Surfaces B: Biointerfaces, Vol. 68, No. 1, 2009, pp. 33-38. doi:10.1016/j.colsurfb.2008.09.08
[5] L. Ye, O. Ramstr?m, M.-O. M?nsson and K. Mosbach, “A New Application of Molecularly Imprinted Materials,” Journal of Molecular Recognition, Vol. 11, No. 1-6, 1998, pp. 75-78.doi:0952-3499/98/010075-04
[6] V. Syritski, J. Reut, A. Menaker, R. E. Gyurcsànyi and A. ?pik, “Electrosynthesized Molecularly Imprinted Poly- pyrrole Films for Enantioselective Recognition of L-Aspartic Acid,” Electrochimica Acta, Vol. 53, No. 6, 2008, pp. 2729-2736. doi:10.1016/j.electacta.2007.10.032
[7] N. Tarannum and M. Singh, “Synthesis and Characterization of Zwitterionic Organogels Based on Schiff Base Chemistry,” Journal of Applied Polymer Science, Vol. 118, No. 5, 2010, pp. 2821-2832. doi:10.1002/app.32393
[8] C. R. Emmenegger, E. Brynda, T. Riedel, Z. Sedlakova M. Houska and A. B. Alles, “Interaction of Blood Plasma with Antifouling Surfaces,” Langmuir, Vol. 25, No. 11, 2009, pp. 6328-6333. doi:10.1021/la900083s
[9] S. Fujishita, C. Inaba, S. Tada, H. Kitano, M. Gemmei-Ide and Y. Saruwatari, “Effect of Zwitterionic Polymers on Wound Healing,” Biological & Pharmaceutical Bulletin, Vol. 31, No. 12, 2008, pp. 2309-2315. doi:10.1248/bpb.31.2309
[10] W. Yang, L. Zhang, S. Wang, A. D. White and S. Jiang, “Functionalizable and Ultra Stable Nanoparticles Coated with Zwitterionic Poly(Carboxybetaine) in Undiluted Blood Serum,” Biomaterials, Vol. 30, No. 29, 2009, pp. 5617-5621. doi:10.1016/j.biomaterials.2009.06.036
[11] W. Yang, H. Xue, W. Li, J. Zhang and S. Jiang, “Pursuing ‘Zero’ Protein Adsorption of Poly(Carboxybetaine) from Undiluted Blood Serum and Plasma,” Langmuir, Vol. 25, No. 19, 2009, pp. 11911-11916. doi:10.1021/la9015788 11911
[12] F. Faridbod, M. R. Ganjali, R. Dinarvand, P. Norouzi and S. Riahi, “Schiff's Bases and Crown Ethers as Supramole- cular Sensing Materials in the Construction of Poten- tiometric Membrane Sensors,” Sensors, Vol. 8, No. 3, 2008, pp. 1645-1703. doi:10.3390/s8031645
[13] F. Faridbod, M. R. Ganjali, B. Larijani, P. Norouzi, S. Riahi and F. F. Mirnaghi, “Lanthanide Recognition: An asymetric Erbium Microsensor Based on a Hydrazone Derivative,” Sensors, Vol. 7, No. 12, 2007, pp. 3119-3135. doi:10.3390/s7123119
[14] M. R. Ganjali, P. Norouzi, F. Faridbod, S. Riahi, J. Ravanshad, J. Tashkhourian, M. Salavati-Niasari and M. Javaheri, “Determination of Vanadyl Ions by a New PVC Membrane Sensor Based on N,N’-Bis-(salicylidene)-2,2- dimethylpropane-1,3-diamine,” IEEE Sensors Journal, Vol. 7, No. 4, 2007, pp. 544-550. doi:10.1109/JSEN.2007.891986
[15] M. R. Ganjali, P. Norouzi, F. S. Mirnaghi, S. Riahi and F. Faridbod, “Lanthanide Recognition: Monitoring of Praseodymium (III) by a Novel Praseodymium (III) Microsensor Based on N-(Pyridin-2-ylmethylene) Benzohydrazide 1,3-diamine,” IEEE Sensors Journal, Vol. 7, No. 8, 2007, pp. 1138-1144. doi:10.1109/JSEN.2007.897950
[16] S. Riahi, M. R. Ganjali, A. B. Moghaddam and P. Norouzi, “Experimental and Quantum Chemical Study on the IR, UV and Electrode Potential of 6-(2,3-Dihydro- 1,3-di-oxo-2-phenyl-1H-inden-2-yl)-2,3-dihydroxybenzaldehyde,” Spectrochimica Acta Part A, Vol. 71, No. 4, 2008, pp. 1390-1396. doi:10.1016/j.saa.2008.04.016
[17] M. J. Frisch, G. W.Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, et al., “Gaussian 03, Revision D.01,” Gaussian, Inc., Wallingford, 2004.
[18] R. Dennington, T. Keith and J. Millam, “GaussView 4.1,” Semichem, Inc., Shawnee Mission, 2007.
[19] S. Riahi, F. Edris-Tabrizi, M. Javanbakht, M. R. Ganjali and P. Norouzi, “A Computational Approach to Studying Monomer Selectivity towards the Template in an Imprinted Polymer,” Journal of Molecular Modeling, Vol. 15, No. 7, 2009, pp. 829-836. doi:10.1007/s00894-008-0437-2
[20] A. Kowalska, A. Stobiecka and S. Wysocki, “A Computational Investigation of the Interactions between Harmane and the Functional Monomers Commonly Used in Molecularly Imprinting,” Journal of Molecular Structure: THEOCHEM, Vol. 901, No. 1-3, 2009, pp. 88-95. doi:10.1016/j.theochem.2009.01.008
[21] S. A. Piletsky, H. S. Andersson and I. A. Nicholls, “Combined Hydrophobic and Electrostatic Interaction- Based Recognition in Molecularly Imprinted Polymers,” Macromolecules, Vol. 32, No. 3, 1999, pp. 633-636. doi:10.1021/ma9812736

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.