On Negative Differential Mobility in Nanophotonic Device Functionality
Emmanuel A. Anagnostakis
DOI: 10.4236/opj.2011.14033   PDF    HTML     6,024 Downloads   9,431 Views   Citations

Abstract

A negative differential mobility (NDM) of the two-dimensional carrier-gas against some proper external regulator allowing for gradual controlled modification of the nanointerfacial environment tends to occur as interwoven with nanophotonic device functionality. In this work, several instances, in our two-decade principal research, of both experimental observation and conceptual prediction concerning nanophotonics NDM are reconsidered towards outlining a global potential for the appearance of the effect.

Share and Cite:

Anagnostakis, E. (2011) On Negative Differential Mobility in Nanophotonic Device Functionality. Optics and Photonics Journal, 1, 216-220. doi: 10.4236/opj.2011.14033.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. A. Anagnostakis, “Characterisation of Semiconductor Epitaxial Layer Interfaces by Persistent Photoconductivity,” Physica Status Solidi A, Vol. 126, No. 2, 1991, pp. 397-410. doi:10.1002/pssa.2211260211
[2] E. A. Anagnostakis, “Photoconductive Gain of Semiconductor Epitaxial Layers,” Physica Status Solidi A, Vol. 127, No. 1, 1991, pp. 153-158. doi:10.1002/pssa.2211270116
[3] D. E. Theodorou and E. A. Anagnostakis, “Persistent Photoconductivity and DX Centres,” Physical Review B, Vol. 44, 1991, pp. 352-3354. doi:10.1103/PhysRevB.44.3352
[4] E. A. Anagnostakis, “Photoconductive Response of GaAs Epitaxial Layers,” Applied Physics A, Vol. 54, No. 1, 1992, pp. 68-71. doi:10.1007/BF00348133
[5] E. A. Anagnostakis, “Proposition of an Effective Wave Function for the 2DEG within MODFET Heterostructures,” Physica Status Soilidi B, Vol. 171, No. 2, 1992, pp. K75-K78. doi:10.1002/pssb.2221710226
[6] E. A. Anagnostakis, “Lateral Photovoltage as a Probe of MODFET Channel Disorder,” Physica Status Solidi B, Vol. 172, 1992, pp. K61-K63. doi:10.1002/pssb.2221720228
[7] E. A. Anagnostakis, “Determination of Persistent Photoconductivity within Semiconductor Epitaxial Layers by Photoconductive Gain,” Physical Review B, Vol. 46, No. 12, 1992, pp. 7593-7595. doi:10.1103/PhysRevB.46.7593
[8] E. A. Anagnostakis and D. E. Theodorou, “Determination of Two Dimensional Electron Gas Population Enhancement within Illuminated Semiconductor Heterostructures by Persistent Photoconductivity,” Journal of Applied Physics, Vol. 73, No. 9, 1993, pp. 4550-4554. doi:10.1063/1.352800
[9] E. A. Anagnostakis, “Negative Differential Mobility Features in the Persistent Photoconductive Response of Semiconductor Devices,” Physica Status Solidi A, Vol. 136, No. 1, 1993, pp. 247-250. doi:10.1002/pssa.2211360131
[10] E. A. Anagnostakis, “On a Generic Equation Modelling the Persistent Photoconductive Response of Semiconductor Devices,” Physica Status Solidi B, Vol. 177, No. 2, 1993, pp. 533-536. doi:10.1002/pssb.2221770230
[11] E. A. Anagnostakis, “Designing a Launcher-Receptor Quantum Electron Device,” Physica Status Solidi B, Vol. 181, No. 1, 1994, pp. K15-K17. doi:10.1002/pssb.2221810127
[12] E. A. Anagnostakis, “Quantum Well Character of Semiconductor Homostructures Underlying the Occurrence of a Negative Differential Mobility,” Physica Status Solidi A, Vol. 141, No. 2, 1994, pp. 373-379. doi:10.1002/pssa.2211410216
[13] E. A. Anagnostakis, “Photoconductive Studies of Carrier Mobility across Semiconductor Surface Depletion Zones,” Physica Status Solidi A, Vol. 146, No. 2, 1994, pp. K9- K11. doi:10.1002/pssa.2211460236
[14] E. A. Anagnostakis and D. E. Theodorou, “Semiconductor Heterointerface Characterisation via Effective Harmonic Oscillator Simulation,” Physica Status Solidi B, Vol. 188, No. 2, 1995, pp. 689-695. doi:10.1002/pssb.2221880212
[15] E. A. Anagnostakis, “Nanoheterointerface Wave Function Penetration Length Photonic Characterization,” Reviews on Advanced Materials Science, Vol. 12, No. 2, 2006, pp. 182-188.
[16] E. A. Anagnostakis, “Semiconductor-Nanoheterointerface Eigenstate Photonic Modification”, Journal of Non-Cry- stalline Solids, Vol. 354, No. 1, 2008, pp. 4233-4237. doi:10.1016/j.jnoncrysol.2008.06.029
[17] E. A. Anagnostakis, “Responsivity Robustness of Radio- ctivity-Irradiated Nanosensors,” WSEAS Transactions on Circuits and Systems, Vol. 8, No. 3, 2009, pp. 311-320.
[18] E. A. Anagnostakis, “On a Scheme of Nanoheterointerfacial Intersubband 15-THz Luminescence,” Physica B, Vol. 405, No. 1, 2010, pp. 25-28. doi:10.1016/j.physb.2009.08.010
[19] E. A. Anagnostakis, “Optoelectronic Nanoheterointerface Functional Eigenstate Photodynamics,” Physica B, Vol. 405, No. 1, 2010, pp. 38-40. doi:10.1016/j.physb.2009.08.002
[20] E. A. Anagnostakis, “Quantum-Well Tridiagonal: A Qua- litative Comprehension of Optoelectronics Nanotechnology,” WSEAS Transactions on Circuits and Systems, Vol. 9, No. 1, 2010, pp. 1-10.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.