[1]
|
Bhatt, R.A. and Rozental, T.D. (2012) Bone Graft Substitutes. Hand Clinics, 28, 457-468. https://doi.org/10.1016/j.hcl.2012.08.001
|
[2]
|
Roberts, T.T. and Rosenbaum, A.J. (2012) Bone Grafts, Bone Substitutes and Orthobiologics. Organogenesis, 8, 114-124. https://doi.org/10.4161/org.23306
|
[3]
|
Wang, W. and Yeung, K.W.K. (2017) Bone Grafts and Biomaterials Substitutes for Bone Defect Repair: A Review. Bioactive Materials, 2, 224-247.
https://doi.org/10.1016/j.bioactmat.2017.05.007
|
[4]
|
Sonju Clasen, A.B. and Ruyter, I.E. (1997) Quantitative Determination of Type A and Type B Carbonate in Human Deciduous and Permanent Enamel by Means of Fourier Transform Infrared Spectrometry. Advances in Dental Research, 11, 523-527. https://doi.org/10.1177/08959374970110042101
|
[5]
|
Moroni, A., Caja, V.L., Egger, E.L., Trinchese L. and Chao, E.Y.S. (1994) Histomorphometry of Hydroxyapatite Coated and Uncoated Porous Titanium Bone Implants. Biomaterials, 15, 926-930. https://doi.org/10.1016/0142-9612(94)90119-8
|
[6]
|
Maxian, S.H., Zawadsky, J.P. and Dunn, M.G. (1994) Effect of Ca/P Coating Resorption and Surgical Fit on the Bone/Implant Interface. Journal of Biomedical Materials Research, 28, 1311-1319. https://doi.org/10.1002/jbm.820281109
|
[7]
|
Gibson, I.R., Best, S.M. and Bonfield, W. (1999) Chemical Characterization of Silicon-Substituted Hydroxyapatite. Journal of Biomedical Materials Research, 44, 422-428. https://doi.org/10.1002/(SICI)1097-4636(19990315)44:4<422::AID-JBM8>3.0.CO;2-#
|
[8]
|
Cahyanto, A. Kosasih, E., Aripin D. and Hasratiningsih Z. (2017) Fabrication of Hydroxyapatite from Fish Bones Waste Using Reflux Method. IOP Conference Series: Materials Science and Engineering, 172, 12006-12012.
https://doi.org/10.1088/1757-899X/172/1/012006
|
[9]
|
Afshar, A., Ghorbani, M., Ehsani N., Saeri, M.R. and Sorrell, C.C. (2003) Some Important Factors in the Wet Precipitation Process of Hydroxyapatite. Materials & Design, 24, 197-202. https://doi.org/10.1016/S0261-3069(03)00003-7
|
[10]
|
Song, L., Sun, L., Jiang, N. and Gan, Z. (2016) Structural Control and Hemostatic Properties of Porous Microspheres Fabricated by Hydroxyapatite-Graft-Poly(D, L-Lactide) Nanocomposites. Composites Science and Technology, 134, 234-241.
https://doi.org/10.1016/j.compscitech.2016.09.001
|
[11]
|
Hama, C., Umeda, T., Mushay, Y., Koda, S. and Itatani, K. (2010) Preparation of Novel Hemostatic Material Containing Spherical Porous Hydroxyapatite/Alginate Granules. Journal of the Ceramic Society of Japan, 118, 446-450.
https://doi.org/10.2109/jcersj2.118.446
|
[12]
|
Yang, Y., Zhou, H., Ni, X., Yang, M., Hou, S., Bi, Y. and Deng, L. (2017) Hydroxyapetite: A Promising Hemostatic Component in Orthopedic Applications. Biology, Engineering and Medicine, 2, 1-5. https://doi.org/10.15761/BEM.1000109
|
[13]
|
Layrolle, P., Ito, A. and Tateishi, T. (1998) Sol-Gel Synthesis of Amorphous Calcium Phosphate and Sintering into Microporous Hydroxyapatite Bioceramics. Journal of the American Ceramic Society, 81, 1421-1428.
https://doi.org/10.1111/j.1151-2916.1998.tb02499.x
|
[14]
|
Loo, S.C.J., Siew, Y.E., Ho, S., Boey, F.Y.C. and Ma, J. (2008) Synthesis and Hydrothermal Treatment of Nanostructured Hydroxyapatite of Controllable Sizes. Journal of Materials Science: Materials in Medicine, 19, 1389-1397.
https://doi.org/10.1007/s10856-007-3261-9
|
[15]
|
Chaudhuri, B., Mondal, B., Modak, D.K., Pramanik, K. and Chaudhuri, B.K. (2013) Preparation and Characterization of Nanocrystalline Hydroxyapatite from Egg Shell and K2HPO4 Solution. Materials Letters, 97, 148-150.
https://doi.org/10.1016/j.matlet.2013.01.082
|
[16]
|
Khoo, W., Nor, F.M., Ardhyananta, H. and Kurniawan, D. (2015) Preparation of Natural Hydroxyapatite from Bovine Femur Bones Using Calcination at Various Temperatures. 2nd International Materials, Industrial, and Manufacturing Engineering Conference, Bali, 4-6 February 2015, Vol. 2, 196-201.
https://doi.org/10.1016/j.promfg.2015.07.034
|
[17]
|
Ripamonti, U., Crooks, J., Khoali, L. and Roden, L. (2009) The Induction of Bone Formation by Coral-Derived Calcium Carbonate/Hydroxyapatite Constructs. Biomaterials, 30, 1428-1439. https://doi.org/10.1016/j.biomaterials.2008.10.065
|
[18]
|
Vecchio, K.S., Zhang, X., Massie, J.B., Wang, M. and Kim, C.W. (2007) Conversion of Bulk Seashells to Biocompatible Hydroxyapatite for Bone Implants. Acta Biomaterialia, 3, 910-918. https://doi.org/10.1016/j.actbio.2007.06.003
|
[19]
|
Rivera, E.M., Araiza, M., Brostow, W., Castano, V.M., Diaz-Estrada, J.R., Hernandez, R. and Rodriguez, J.R. (1999) Synthesis of Hydroxyapatite from Eggshells. Materials Letters, 41, 128-134. https://doi.org/10.1016/S0167-577X(99)00118-4
|
[20]
|
Leea, S.J. and Oh, S.H. (2003) Fabrication of Calcium Phosphate Bioceramics by using Eggshell and Phosphoric Acid. Materials Letters, 57, 4570-4574.
https://doi.org/10.1016/S0167-577X(03)00363-X
|
[21]
|
Balázsi, C., Wéber, F., KÖvér, Z., Horváth, E. and Námeth, C. (2007) Preparation of Calcium-Phosphate Bioceramics from Natural Resources. Journal of the European Ceramic Society, 27, 1601-1606. https://doi.org/10.1016/j.jeurceramsoc.2006.04.016
|
[22]
|
Tas, A.C. (2000) Synthesis of Biomimetic Ca-Hydroxyapatite Powders at 37 ℃ in Synthetic Body Fluids. Biomaterials, 21, 1429-1438.
https://doi.org/10.1016/S0142-9612(00)00019-3
|
[23]
|
Abdulrahman, I., Tijani, H.I., Mohammed, B.A., Saidu, H., Yusuf, H., Jibrin, M.N. and Mohammed, S. (2014) From Garbage to Biomaterials: An Overview on Egg Shell Based Hydroxyapatite. Journal of Materials, 2014, Article ID: 802467.
https://doi.org/10.1155/2014/802467
|
[24]
|
Kumar, G.S., Thamizhavel, A. and Girija, E.K. (2012) Microwave Conversion of Eggshells into Flower-Like Hydroxyapatite Nanostructure for Biomedical Applications. Materials Letters, 76, 198-200. https://doi.org/10.1016/j.matlet.2012.02.106
|
[25]
|
Türk, S., Altinsoy, I., ÇelebiEfe, G., Ipek, M., Özacar, M. and Bindal, C. (2017) Microwave-Assisted Biomimetic Synthesis of Hydroxyapatite Using Different Sources of Calcium. Materials Science and Engineering: C, 76, 528-535.
https://doi.org/10.1016/j.msec.2017.03.116
|
[26]
|
Gergely, G., Wéber, F., Lukács, I., Tóth, A.L., Horváth, Z.E., Mihály, J. and Balázsi, C. (2010) Preparation and Characterization of Hydroxyapatite from Eggshell. Ceramics International, 36, 803-806. https://doi.org/10.1016/j.ceramint.2009.09.020
|
[27]
|
Rhee, S. (2002) Synthesis of Hydroxyapatite via Mechanochemical Treatment. Biomaterials, 23, 1147-1152. https://doi.org/10.1016/S0142-9612(01)00229-0
|
[28]
|
Sanosh, K.P., Chu, M.-C, Balakrishnan, A., Kim, T.N. and Cho, S.-J. (2009) Utilization of Biowaste Eggshells to Synthesize Nanocrystalline Hydroxyapatite Powders. Materials Letters, 63, 2100-2102. https://doi.org/10.1016/j.matlet.2009.06.062
|
[29]
|
Wu, S., Tsou, H., Hsu, H., Hsu S., Liou, S. and Ho, W. (2013) A Hydrothermal Synthesis of Eggshell and Fruit Waste Extract to Produce Nanosized Hydroxyapatite. Ceramics International, 39, 8183-8188.
https://doi.org/10.1016/j.ceramint.2013.03.094
|
[30]
|
Bernard, L., Freche, M., Lacout J.L. and Biscans, B. (1999) Preparation of Hydroxyapatite by Neutralization at Low Temperature-Influence of Purity of the Raw Material. Powder Technology, 103, 19-25.
https://doi.org/10.1016/S0032-5910(99)00009-1
|
[31]
|
Guo, G., Sun, Y., Wang, Z. and Guo, H. (2005) Preparation of Hydroxyapatite Nanoparticles by Reverse Microemulsion. Ceramics International, 31, 869-872.
https://doi.org/10.1016/j.ceramint.2004.10.003
|
[32]
|
Mann, S. and Ozin, G.A. (1996) Synthesis of Inorganic Materials with Complex Form. Nature, 365, 313-318. https://doi.org/10.1038/382313a0
|
[33]
|
Mann, S., Archibald, D.D., Didymus, J.M., Douglas, T., Heywood, B.R., Meldrum, F.C. and Nicholas, J.R. (1993) Crystallization at Inorganic-Organic Interfaces: Biominerals and Biomimetic Synthesis. Science, 261, 1286-1292.
https://doi.org/10.1126/science.261.5126.1286
|
[34]
|
Muthukumar, M., Ober, C.K. and Thomas, E.L. (1997) Competing Interactions and Levels of ordering in Self-Organizing Polymeric Materials. Science, 277, 1225-1232.
https://doi.org/10.1126/science.277.5330.1225
|
[35]
|
Stupp, S.I. and Braun, P.V. (1997) Molecular Manipulation of Microstructures: Biomaterials, Ceramics, and Semiconductors. Science, 277, 1242-1248.
https://doi.org/10.1126/science.277.5330.1242
|
[36]
|
Boskey, A.L. (1998) Will Biomimetics Provide New Answers for Old Problems of Calcified Tissues? Calcified Tissue International, 63, 179-182.
https://doi.org/10.1007/s002239900511
|
[37]
|
Chang, M.C., Ko, C.-C. and Douglas, W.H. (2003) Preparation of Hydroxyapatite-Gelatin Nanocomposite. Biomaterials, 24, 2853-2862.
https://doi.org/10.1016/S0142-9612(03)00115-7
|
[38]
|
Sobczak-Kupiec, A., Malina, D., Kijkowska, R. and Wzorek, Z. (2012) Comparative Study of Hydroxyapatite Prepared by the Authors with Selected Commercially Available Ceramics. Digest Journal of Nanomaterials and Biostructures, 7, 385-391.
|
[39]
|
Hench, L.L. (1991) Biocreramics: From Concept of Clinic. Journal of the American Ceramic Society, 74, 1487-1510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
|
[40]
|
Ducheyne, P. and Cuckler, J.M. (1992) Bioactive Ceramic Prosthetic Coatings. Clinical Orthopaedics and Related Research, 276, 102-114.
https://doi.org/10.1097/00003086-199203000-00014
|
[41]
|
Wu, C. and Chang, J. (2006) A Novel Akermanite Bioceramic: Preparation and Characteristics. Journal of Biomaterials Applications, 21, 119-129.
https://doi.org/10.1177/0885328206057953
|
[42]
|
Bowen, C.R., Gittings, J., Turner, I.G., Baxter, F. and Chaudhuri, J.B. (2006) Dielectric and Piezoelectric Properties of Hydroxyapatite-BaTiO3 Composites. Applied Physics Letters, 89, Article ID: 132906. https://doi.org/10.1063/1.2355458
|
[43]
|
Gao, Y., Cao, W.L., Wang, X.Y., Gong, Y.D., Tian, J.M., Zhao, N.M. and Zhang, X.F. (2006) Characterization and Osteoblast-Like Cell Compatibility of Porous scaffolds: Bovine Hydroxyapatite and Novel Hydroxyapatite Artificial Bone. Journal of Materials Science: Materials in Medicine, 17, 815-823.
https://doi.org/10.1007/s10856-006-9840-3
|
[44]
|
Joschek, S., Nies, B., Krotz, R. and Gopferich, A. (2000) Chemical and Physicochemical Characterization of Porous Hydroxyapatite Ceramics Made of Natural Bone. Biomaterials, 21, 1645-1658. https://doi.org/10.1016/S0142-9612(00)00036-3
|
[45]
|
Zhang, H. and Darvell, B.W. (2011) Morphology and Structural Characteristics of Hydroxyapatite Whiskers: Effect of the Initial Ca Concentration, Ca/P Ratio and pH. Acta Biomaterialia, 7, 2960-2968. https://doi.org/10.1016/j.actbio.2011.03.020
|
[46]
|
Werner, J., Linner-Krčmar, B., Friess, W. and Greil, P. (2002) Mechanical Properties and in Vitro Cell Compatibility of Hydroxyapatite Ceramics with Graded Pore Structure. Biomaterials, 23, 4285-4294.
https://doi.org/10.1016/S0142-9612(02)00191-6
|
[47]
|
Ooi, C.Y., Hamdi, M. and Ramesh, S. (2007) Properties of Hydroxyapatite Produced by Annealing of Bovine Bone. Ceramics International, 33, 1171-1177.
https://doi.org/10.1016/j.ceramint.2006.04.001
|
[48]
|
Rahavi, S.S., Ghaderi, O., Monshi, A. and Fathi, M.H. (2017) A Comparative Study on Physicochemical Properties of Hydroxyapatite Powders Derived from Natural and Synthetic Sources. Russian Journal of Non-Ferrous Metals, 58, 276-286.
https://doi.org/10.3103/S1067821217030178
|
[49]
|
Dressman, H. (1892) Ueber Knochenplombierung bei Hohlenformigen Defekten des Knochens. Beitr Klin Chir, 9, 804-810.
|
[50]
|
Dorozhkin, S.V. (2017) A History of Calcium Orthophosphates (CaPO4) and Their Biomedical Applications. Morphologie, 101, 143-153.
https://doi.org/10.1016/j.morpho.2017.05.001
|
[51]
|
Driskell, T.D. (1994) Early History of Calcium Phosphate Materials and Coatings. In: Horowitz, E. and Parr, J.E., Eds., Characterization and Performance of Calcium Phosphate Coatings for Implants, ASTM STP 1196, American Society for Testing and Materials, Philadelphia, 1. https://doi.org/10.1520/STP25177S
|
[52]
|
Shackelford, J.F. (1999) Bioceramics—An Historical Perspective. Materials Science Forum, 293, 1-4. https://doi.org/10.4028/www.scientific.net/MSF.293.1
|
[53]
|
Hulbert, S.F., Hench, L.L., Forbers, D. and Bowman, L.S. (1982) History of Bioceramics. Ceramics International, 8, 131-140.
https://doi.org/10.1016/0272-8842(82)90003-7
|
[54]
|
Hulbert, S.F., Hench, L.L., Forbers, D. and Bowman, L.S. (1983) History of Bioceramics. In: Vincenzini, P., Ed., Ceramics in Surgery, Elsevier, Amsterdam, 3-29.
|
[55]
|
Shepperd, J. (2004) The Early Biological History of Calcium Phosphates. Springer, Berlin, 3-8. https://doi.org/10.1007/978-2-8178-0851-2_1
|
[56]
|
Albee, F.H. (1915) Bone Graft Surgery. W.B. Saunders Company, Philadelphia and London, 417-419.
|
[57]
|
Albee, F.H. (1920) Studies in Bone Growth. Triple Calcium Phosphate as a Stimulus to Osteogenesis. Annals of Surgery, 71, 32-39.
|
[58]
|
Aoki, H., Kato, K., Ogiso, M. and Tabata, T. (1977) Studies on the Application of Apatite to Dental Materials. Journal of the Japanese Society for Dental Materials and Devices, 18, 86-89.
|
[59]
|
de Lange, G.L. and Donath, K. (1989) Interface between Bone Tissue and Implants of Solid Hydroxyapatite or Hydroxyapatite-Coated Titanium Implants. Biomaterials, 10, 121-125. https://doi.org/10.1016/0142-9612(89)90044-6
|
[60]
|
Blüthmann, H. (1977) Chromatography of Histones on Hydroxyapatite Columns. Journal of Chromatography A, 137, 222-227.
https://doi.org/10.1016/S0021-9673(00)89262-6
|
[61]
|
Rameshbabu, N., Rao, K.P. and Kumar, T.S.S. (2005) Accelerated Microwave Processing of Nanocrystalline Hydroxyapatite. Journal of Materials Science, 40, 6319-6323. https://doi.org/10.1007/s10853-005-2957-9
|
[62]
|
Venugopal, J., Prabhakaran, M.P., Zhang, Y., Low, S., Choon, A.T. and Ramakrishna, S. (2010) Biomimetic Hydroxyapatite-Containing Composite Nanofibrous Substrates for Bone Tissue Engineering. Philosophical Transactions of the Royal Society A, 368, 2065-2081. https://doi.org/10.1098/rsta.2010.0012
|
[63]
|
Oonishi, H. (1991) Orthopaedic Applications of Hydroxyapatite. Biomaterials, 12, 171-178. https://doi.org/10.1016/0142-9612(91)90196-H
|
[64]
|
Ito, Y., Hasuda, H., Kamitakahara, M., Ohtsuki, C., Tanihara, M., Kang, I.K. and Kwon, O.H. (2005) A Composite of Hydroxyapatite with Electrospun Biodegradable Nanofibers as a Tissue Engineering Material. Journal of Bioscience and Bioengineering, 100, 43-49. https://doi.org/10.1263/jbb.100.43
|
[65]
|
Venugopal, J., Vadagama, P., Sampath Kumar, T.S. and Ramakrishna, S. (2007) Biocomposite Nanofibres and Osteoblasts for Bone Tissue Engineering. Nanotechnology, 18, 055101-055108. https://doi.org/10.1088/0957-4484/18/5/055101
|
[66]
|
Venugopal, J., Low, S., Choon, A.T., Kumar, A.B. and Ramakrishna, S. (2008) Electrospun-Modified Nanofibrous Scaffolds for the Mineralization of Osteoblast Cells. Journal of Biomedical Materials Research, 85, 408-417.
https://doi.org/10.1002/jbm.a.31538
|
[67]
|
Venugopal, J., Low, S., Choon, A.T., Bharath Kumar, A. and Ramakrishna, S. (2008e) Nanobioengineered Electrospun Composite Nanofibers and Osteoblasts for Bone Regeneration. Artificial Organs, 32, 388-397.
https://doi.org/10.1111/j.1525-1594.2008.00557.x
|
[68]
|
Prabhakaran, M.P., Venugopal, J. and Ramakrishna, S. (2009) Electrospun Nanostructured Scaffolds for Bone Tissue Engineering. Acta Biomaterialia, 5, 2884-2893.
https://doi.org/10.1016/j.actbio.2009.05.007
|
[69]
|
Marra, K.G., Szem, J.W., Kumta, P.N., DiMilla, P.A. and Weiss, L.E. (1999) In Vitro Analysis of Biodegradable Polymer Blend/Hydroxyapatite Composites for Bone Tissue Engineering. Journal of Biomedical Materials Research, 47, 324-335.
https://doi.org/10.1002/(SICI)1097-4636(19991205)47:3<324::AID-JBM6>3.0.CO;2-Y
|
[70]
|
Greish, Y.E., Bender, J.D., Lakshmi, S., Brown, P.W., Allcock, H.R. and Laurencin, C.T. (2005) Low Temperature Formation of Hydroxyapatite-Poly(Alkyl Oxybenzoate) Phosphazene Composites for Biomedical Applications. Biomaterials, 26, 1-9.
https://doi.org/10.1016/j.biomaterials.2004.02.016
|
[71]
|
Wang, Y.W., Wu, Q., Chen, J. and Chen, G.Q. (2005) Evaluation of Three-Dimensional Scaffolds Made of Blends of Hydroxyapatite and Poly (3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) for Bone Reconstruction. Biomaterials, 26, 899-904. https://doi.org/10.1016/j.biomaterials.2004.03.035
|
[72]
|
Petricca, S.E., Marra, K.G. and Kumta, P.N. (2006) Chemical Synthesis of Poly(Lactic-Co-Glycolic Acid)/Hydroxyapatite Composites for Orthopaedic Applications. Acta Biomaterialia, 2, 277-286. https://doi.org/10.1016/j.actbio.2005.12.004
|
[73]
|
Palazzo, B., Iafisco, M., Laforgia, M., Margiotta, N., Natile, G., Bianchi, C.L., Walsh, D., Mann, S. and Roveri, N. (2007) Biomimetic Hydroxyapatite-Drug Nanocrystals as Potential Bone Substitutes with Antitumor Drug Delivery Properties. Advanced Functional Materials, 17, 2180-2188. https://doi.org/10.1002/adfm.200600361
|
[74]
|
Hu, Q., Li, B., Wang, M. and Shen, J. (2004) Preparation and Characterization of Biodegradable Chitosan/Hydroxyapatite Nanocomposite Rods via in Situ Hybridization: A Potential Material as Internal Fixation of Bone Fracture. Biomaterials, 25, 779-785. https://doi.org/10.1016/S0142-9612(03)00582-9
|
[75]
|
Hoffmann, B., Volkmer, E., Kokott, A., Weber, M., Hamisch, S., Schieker, M., Mutschler, W. and Ziegler, G. (2007) A New Biodegradable Bone Wax Substitute with the Potential to be used as a Bone Filling Material. Journal of Materials Chemistry, 7, 4028-4033. https://doi.org/10.1039/b707992n
|
[76]
|
Madhumathi, K., Shalumon, K.T., Divya Rani, V.V., Tamura, H., Furuike, T., Selvamurugan, N., Nair, S.V. and Jayakumar, R. (2009) Wet Chemical Synthesis of Chitosan Hydrogel-Hydroxyapatite Composite Membranes for Tissue Engineering Applications. International Journal of Biological Macromolecules, 45, 12-15.
https://doi.org/10.1016/j.ijbiomac.2009.03.011
|
[77]
|
Champion, E. (2013) Sintering of Calcium Phosphate Bioceramics. Acta Biomaterialia, 9, 5855-5875. https://doi.org/10.1016/j.actbio.2012.11.029
|
[78]
|
Ngiam, M., Liao, S., Patil, A.J., Cheng, Z., Yang, F., Gubler, M.J., Ramakrishna, S. and Chan, C.K. (2009) Fabrication of Mineralized Polymeric Nanofibrous Composites for Bone Graft Materials. Tissue Engineering Part A, 15, 535-546.
https://doi.org/10.1089/ten.tea.2008.0011
|
[79]
|
Rodríguez-Lorenzo, L.M., Vallet-Regí, M., Ferreira, J.M.F., Ginebra, M.P., Aparicio, C. and Planell, J.A. (2002) Hydroxyapatite Ceramic Bodies with Tailored Mechanical Properties for Different Applications. Journal of Biomedical Materials Research, 60, 159-166. https://doi.org/10.1002/jbm.1286
|
[80]
|
Ramier, J., Bouderlique, T., Stoilova, O., Manolova, N., Rashkov, I., Langlois, V., Renard, E., Albanese, P. and Grande, D. (2014) Biocomposite Scaffolds Based on Electrospun Poly(3-Hydroxybutyrate) Nanofibers and Electrosprayed Hydroxyapatite Nanoparticles for Bone Tissue Engineering Applications. Materials Science and Engineering: C, 38, 161-169. https://doi.org/10.1016/j.msec.2014.01.046
|
[81]
|
Baradaran, S., Moghaddam, E., Basirun, W.J., Mehrali, M., Sookhakian, M., Hamdi, M., Nakhaei Moghaddam, M.R. and Alias, Y. (2014) Mechanical Properties and Biomedical Applications of a Nanotube Hydroxyapatite-Reduced Graphene Oxide Composite. Carbon, 69, 32-45. https://doi.org/10.1016/j.carbon.2013.11.054
|
[82]
|
Zeng, Y., Pei, X., Yang, S., Qin, H., Cai, H., Hu, S., Sui, L., Wan, Q. and Wang, J. (2016) Graphene Oxide/Hydroxyapatite Composite Coatings Fabricated by Electrochemical Deposition. Surface and Coatings Technology, 286, 72-79.
https://doi.org/10.1016/j.surfcoat.2015.12.013
|
[83]
|
Liu, A., Xue, G., Sun, M., Sha, H., Ma, C., Gao, Q., et al. (2016) 3D Printing Surgical Implants at the Clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction. Scientific Reports, 6, Article No. 21704.
https://doi.org/10.1038/srep21704
|
[84]
|
Yao, Q., Wei, B., Guo, Y., Jin, C., Du, X., Yan, C., et al. (2015) Design, Construction and Mechanical Testing of Digital 3D Anatomical Data-Based PCL-HA Bone Tissue Engineering Scaffold. Journal of Materials Science: Materials in Medicine, 26, 51-59.
https://doi.org/10.1007/s10856-014-5360-8
|
[85]
|
Senatov, F.S., Niaza, K.V., Zadorozhnyy, M.Y., Maksimkin, A.V., Kaloshkin, S.D. and Estrin, Y.Z. (2016) Mechanical Properties and Shape Memory Effect of 3D-Printed PLA-Based Porous Scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 57, 139-148. https://doi.org/10.1016/j.jmbbm.2015.11.036
|
[86]
|
Gonçalves, E.M., Oliveira, F.J., Silva, R.F., Neto, M.A., Fernandes, M.H., Amaral, M., et al. (2016) Three-Dimensional Printed PCL-Hydroxyapatite Scaffolds Filled with CNTs for Bone Cell Growth Stimulation. Journal of Biomedical Materials Research Part B, 104B, 1210-1219. https://doi.org/10.1002/jbm.b.33432
|
[87]
|
Trachtenberg, J.E., Placone, J.K., Smith, B.T., Fisher, J.P. and Mikos, A.G. (2017) Extrusion-Based 3D Printing of Poly(Propylene Fumarate) Scaffolds with Hydroxyapatite Gradients. Journal of Biomaterial Science Polymer, 28, 532-554.
https://doi.org/10.1080/09205063.2017.1286184
|
[88]
|
Loo, S.C.J., Moore1, T., Banik, B. and Alexis, F. (2010) Biomedical Applications of Hydroxyapatite Nanoparticles. Current Pharmaceutical Biotechnology, 11, 333-342.
https://doi.org/10.2174/138920110791233343
|
[89]
|
Morgan, T., Muddana, H., Altinoglu, E., Rouse, S., Tabakovic, A., Tabouillot, T., Russin, T., Shanmugavelandy, S., Butler P., Eklund, P., Yun, J., Kester, M. and Adair, J.H. (2008) Encapsulation of Organic Molecules in Calcium Phosphate Nanocomposite Particles for Intracellular Imaging and Drug Deliver. Nano Letters, 8, 4108-4115. https://doi.org/10.1021/nl8019888
|
[90]
|
Goyal, A.K., Rawat, A., Mahor, S., Gupta, P.N., Khatri, K. and Vyas, S.P. (2006) Nanodecoy System: A Novel Approach to Design Hepatitis B Vaccine for Immunopotentiation. International Journal of Pharmaceutics, 309, 227-233.
https://doi.org/10.1016/j.ijpharm.2005.11.037
|
[91]
|
Dubnika, A., Loca, D., Rudovica, V., Parekh, M.B. and Berzina-Cimdina, L. (2017) Functionalized Silver Doped Hydroxyapatite Scaffolds for Controlled Simultaneous Ion and Drug Delivery. Ceramics International, 43, 3698-3705.
https://doi.org/10.1016/j.ceramint.2016.11.214
|
[92]
|
Szcześ, A., HoIysz, L. and Chibowski, E. (2017) Synthesis of Hydroxyapatite for Biomedical Applications. Advances in Colloid and Interface Science, 249, 321-330.
https://doi.org/10.1016/j.cis.2017.04.007
|