Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues
S. P. Flego, Angelo Plastino, A. R. Plastino
DOI: 10.4236/jmp.2011.211171   PDF    HTML     4,468 Downloads   7,662 Views   Citations


It is well known that a suggestive connection links Schrödinger’s equation (SE) and the information-optimizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the existence of a Legendre transform structure underlying the SE. Such a structure leads to a first order partial differential equation (PDE) for the SE’s eigenvalues from which a complete solution for them can be obtained. We test this theory with regards to anharmonic oscillators (AHO). AHO pose a long-standing problem and received intense attention motivated by problems in quantum field theory and molecular physics. By appeal to the Cramer Rao bound we are able to Fisher-infer the energy eigenvalues without explicitly solving Schrödinger’s equation. Remarkably enough, and in contrast with standard variational approaches, our present procedure does not involve free fitting parameters.

Share and Cite:

S. Flego, A. Plastino and A. Plastino, "Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues," Journal of Modern Physics, Vol. 2 No. 11, 2011, pp. 1390-1396. doi: 10.4236/jmp.2011.211171.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. R. Frieden, “Science from Fisher Information: A Unification,” Cambridge, University Press, Cambridge, 2004. doi:10.1017/CBO9780511616907
[2] B. R. Frieden, A. Plastino, A. R. Plastino and B. H. Soffer, “Fisher-Based Thermodynamics: Its Legendre Transform and Concavity Properties,” Physical Review E, Vol. 60, 1999, pp. 48-55. doi:10.1103/PhysRevE.60.48
[3] M. Reginatto, “Derivation of the Equations of Nonrelativistic Quantum Mechanics Using the Principle of Minimum Fisher Information,” Physical Review E, Vol. 58, 1998, pp. 1775-1778.
[4] S. P. Flego, B. R. Frieden, A. Plastino, A. R. Plastino and B. H. Soffer, “Non-Equilibrium Thermodynamics and Fisher Information: Sound Waves Propagation in a Dilute Gas,” Physical Review E, Vol. 68, No. 16, 2003, pp. 105- 115.
[5] S. P. Flego, A. Plastino and A. R. Plastino, “Legendre- transform Structure Derived from Quantum Theorems,” Physica A, Vol. 390, 2011, pp. 2276-2281. doi:10.1016/j.physa.2011.02.019
[6] S. P. Flego, A. Plastino and A. R. Plastino, “Special Features of the Relation between Fisher Information and Schroedinger Eigenvalue Equation,” Journal of Mathematical Physics, Vol. 52, No. 8, 2011, pp. 2103-2116. doi:10.1063/1.3625265
[7] S. P. Flego, A. Plastino and A. R. Plastino, “Inferring an Optimal Fisher Measure,” Physica A, Vol. 390, 2011, pp. 4702-4712. doi:10.1016/j.physa.2011.06.050
[8] F. T. Hioe and E. W. Montroll, “Quantum Theory of Anharmonic Oscillators I. Energy Levels of Oscillators with Positive Quartic Anharmonicity,” Journal of Mathematical Physics, Vol. 16, 1975, pp. 1945-1950. doi:10.1063/1.522747
[9] C. M. Bender and T. T. Wu, “Anharmonic Oscillator,” Physical Review, Vol. 184, 1969, pp. 1231-1260. doi:10.1103/PhysRev.184.1231
[10] K. Banerjee. “W. K. B. Approximation and Scaling,” Proceedings of the Royal Society A, Vol. 363, 1978, pp. 147-151.
[11] R. P. Feynman, “Forces in Molecules,” Physical Review, Vol. 56, 1939, pp. 340-343.
[12] A. Desloge, “Thermal Physics,” Holt, Rinehart and Winston, New York, 1968.
[13] W. Greiner and B. Müller, “Quantum Mechanics. An Introduction,” Springer, Berlin, 1988.
[14] P. M. Mathews and K. Venkatesan, “A Textbook of Quantum Mechanics,” Tata McGraw-Hill Publishing Company Limited, New Delhi, 1986.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.