[1]
|
Smit, J. and Wijn, H.P.J. (1959) Ferrites. Phil. Techn Lib., Eindhoven, 177.
|
[2]
|
Kojima, H. and Wohlfarth (1953) Ferromagnetic Materials. Amsterdam, 3, 305.
https://doi.org/10.1016/S1574-9304(05)80091-4
|
[3]
|
Feynman, R.P., Leighton, R.B. and Sands, M. (2005) The Feynman Lectures on Physics. 2nd Edition, Chapter 34, Addison-Wesley, Boston.
|
[4]
|
Rathenau, G.W., Smit, J. and Stuyts, A.L. (1952) Ferroxdure: A Class of New Permanent Magnetic Materials. Philips Technical Review, 13, 7.
|
[5]
|
Landau, L.D. and Lifshitz, E.M. (2008) On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies. Physikalische Zeitschrift der Sowjetunion, 53, 14-22.
|
[6]
|
Weiss, M.T. and Anderson, P.W. (1955) Ferromagnetic Resonance in Ferroxdure. Physical Review, 98, 925-926. https://doi.org/10.1103/PhysRev.98.925
|
[7]
|
Sixtus, K.J., Kronenberg, K.J. and Tenzer, R.K. (1956) Investigations on Barium Ferrite Magnets. Journal of Applied Physics, 27, 1051-1057.
https://doi.org/10.1063/1.1722540
|
[8]
|
Harris, V.G., Chen, Z., Chen, Y., Yoon, S., Sakai, T., Gieler, A., Yang, A., He, Y., Ziemer, K.S., Sun, N.X. and Vittoria, C. (2006) Ba-Hexaferrite Films for Next Generation Microwave Devices (Invited). Journal of Applied Physics, 99, 08M911.
|
[9]
|
Ozgur, U., Alivov, Y. and Morkoc, H. (2009) Microwave Ferrites, Part 1: Fundamental Properties. Journal of Materials Science: Materials in Electronics, 20, 789-834. https://doi.org/10.1007/s10854-009-9923-2
|
[10]
|
Pullar, R.C. (2012) Hexagonal Ferrites: A Review of the Synthesis, Properties and Applications of Hexaferrite Ceramics. Progress in Materials Science, 57, 1191-1334.
https://doi.org/10.1016/j.pmatsci.2012.04.001
|
[11]
|
Braun, P.B. (1957) The Crystal Structure of a New Group of Ferromagnetic Compounds. Philips Research Reports, 12, 491-548.
|
[12]
|
Sugimoto, M. and Wohfarth, E.P. (1980) Ferromagnetic Materials. North-Holland Physics Publishing, Amsterdam, Vol. 3, 392-440.
|
[13]
|
Kamishima, K., Hosaka, N., Kakizaki, K. and Hiratsuka, N. (2011) Crystallographic and Magnetic Properties of Cu2X, Co2X and Ni2X Hexaferrites. Journal of Applied Physics, 109, Article ID: 013904. https://doi.org/10.1063/1.3527933
|
[14]
|
Bertaut, F., Deschamps, A. and Pauthenet, R. (1958) Comptes Rendus de l’Académie des Sciences, 246, 2594-9597.
|
[15]
|
Albanese, G. and Deriu, A. (1979) Magnetic Properties of Al, Ga, Sc, in Substituted Barium Ferrits: A Comparative Analysis. Ceramurgia International, 5, 3-10.
https://doi.org/10.1016/0390-5519(79)90002-4
|
[16]
|
Von Aulok, W.H. (1965) Handbook of Microwave Ferrites. Academic Press, New York.
|
[17]
|
Adelskold, V. (1938) Crystal Structure of Lead Dodecairon (III) Oxide. Arkiv for Kemi, Mineralogi och Geologi A, 12, 1-9.
|
[18]
|
(2012) Structures of BaFe12O19.
http://som.web.cmu.edu/structures/S063-BaFe12O19.html
|
[19]
|
Kreisel, J., Lucazeau, G. and Vincent, H. (1999) Raman Study of Substituted Barium Ferrite Single Crystals, BaFe12−2xMexCoxO19 (Me = Ir, Ti). Raman Spectroscopy, 30, 115-120.
https://doi.org/10.1002/(SICI)1097-4555(199902)30:2<115::AID-JRS354>3.0.CO;2-D
|
[20]
|
Kreisel, J., Vincent, H., Tasset, F., Paté, M. and Ganne, J.P. (2001) An Investigation of the Magnetic Anisotropy Change in BaFe12−2xTixCoxO19 Single Crystals. Journal of Magnetism and Magnetic Materials, 224, 17-29.
https://doi.org/10.1016/S0304-8853(00)01355-X
|
[21]
|
Fu, H., Zhai, H.R., Zhang, H.C., Gu, B.X. and Li, J.Y. (1986) Magnetic Properties of Mn Substituted Barium Ferrite. Journal of Magnetism and Magnetic Materials, 54-57, 905-906. https://doi.org/10.1016/0304-8853(86)90307-0
|
[22]
|
Gershov, I.Y. (1964) Barium Ferrite Permanent Magnets. Soviet Powder Metallurgy and Metal Ceramics, 1, 386-393. https://doi.org/10.1007/BF00774124
|
[23]
|
Naiden, E.P., Itin, V.I. and Terekhova, O.G. (2003) Mechanochemical Modification of the Phase Diagrams of Hexagonal Oxide Ferrimagnets. Technical Physics Letters, 29, 889-891. https://doi.org/10.1134/1.1631354
|
[24]
|
Mahmood, S.H., Aloqaily, A.N., Maswadeh, Y., Awadallah, A., Bsoul, I., Awawdeh, M. and Juwhari, H.K. (2015) Effects of Heat Treatment on the Phase Evolution, Structural, and Magnetic Properties of Mo-Zn Doped M-Type Hexaferrites. Solid State Phenomena, 232, 65-92. https://doi.org/10.4028/www.scientific.net/SSP.232.65
|
[25]
|
Mahmood, S., Aloqaily, A., Maswadeh, Y., Awadallah, A., Bsoul, I. and Juwhari, H. (2014) Structural and Magnetic Properties of Mo-Zn Substituted (BaFe12−4xMoxZn3xO19) M-Type Hexaferrites. Material Science Research India, 11, 9-20.
https://doi.org/10.13005/msri/110102
|
[26]
|
Turilli, G., Licci, F., Rinaldi, S. and Deriu, A. (1986) Mn2+ , Ti4+ Substituted Barium Ferrite. Journal of Magnetism and Magnetic Materials, 59, 127-131.
https://doi.org/10.1016/0304-8853(86)90019-3
|
[27]
|
Awadallah, A., Mahmood, S.H., Maswadeh, Y., Bsoul, I., Awawdeh, M., Mohaidat, Q.I. and Juwhari, H. (2016) Structural, Magnetic, and Mossbauer Spectroscopy of Cu Substituted M-Type Hexaferrites. Materials Research Bulletin, 74, 192-201.
https://doi.org/10.1016/j.materresbull.2015.10.034
|
[28]
|
Ozkan, O.T. and Erkalfa, H. (1994) The Effect of B2O3 Addition on the Direct Sintering of Barium Hexaferrite. Journal of the European Ceramic Society, 14, 351-358.
https://doi.org/10.1016/0955-2219(94)90072-8
|
[29]
|
Lisjak, D. and Drofenik, M. (2007) The Mechanism of the Low-Temperature Formation of Barium Hexaferrite. Journal of the European Ceramic Society, 27, 4515-4520. https://doi.org/10.1016/j.jeurceramsoc.2007.02.202
|
[30]
|
Wang, J.P., Ying, L., Zhang, M.L., Qiao, Y.J. and Tian, X. (2008) Comparison of the Sol-Gel Method with the Coprecipitation Technique for Preparation of Hexagonal Barium Ferrite. Chemical Research in Chinese Universities, 24, 525-528.
https://doi.org/10.1016/S1005-9040(08)60110-5
|
[31]
|
Harikrishnan, V., Saravanan, P., Vizhi, R.E., Babu, D.R., Vinod, V., Kejzlar, P. and Cerník, M. (2016) Effect of Annealing Temperature on the Structural and Magnetic Properties of CTAB Capped SrFe12O19 Platelets. Journal of Magnetism and Magnetic Materials, 401,775-783. https://doi.org/10.1016/j.jmmm.2015.10.122
|
[32]
|
Davoodi, A. and Hashemi, B. (2012) Investigation of the Effective Parameters on the Synthesis of Strontium Hexaferrite Nanoparticles by Chemical Coprecipitation Method. Journal of Alloys and Compounds, 512,179-184.
https://doi.org/10.1016/j.jallcom.2011.09.059
|
[33]
|
Janasi, S.R., Rodrigues, D., Landgraf, F.J. and Emura, M. (2000) Magnetic Properties of Coprecipitated Barium Ferrite Powders as a Function of Synthesis Conditions. IEEE Transactions on Magnetics, 36, 3327-3329. https://doi.org/10.1109/20.908788
|
[34]
|
Jacobo, S.E., Domingo-Pascual, C., Rodrigez-Clemente, R. and Blesa, M.A. (1997) Synthesis of Ultrafine Particles of Barium Ferrite by Chemical Coprecipitation. Journal of Materials Science, 32, 1025-1028.
https://doi.org/10.1023/A:1018582423406
|
[35]
|
Matutes-Aquino, J., Diaz-Castanón, S., Mirabal-Garcia, M. and Palomares-Sánchez, S. (2000) Synthesis by Coprecipitation and Study of Barium Hexaferrite Powders. Scripta Materialia, 42, 295-299. https://doi.org/10.1016/S1359-6462(99)00350-4
|
[36]
|
Shepherd, P., Mallick, K.K. and Green, R.J. (2007) Magnetic and Structural Properties of M-Type Barium Hexaferrite Prepared by Co-Precipitation. Journal of Magnetism and Magnetic Materials, 311, 683-692.
https://doi.org/10.1016/j.jmmm.2006.08.046
|
[37]
|
Gulshan, F. and Okada, K. (2013) The Preparation of Alumina-Iron Oxide Compounds by Coprecipitation Method and Its Characterization. American Journal of Materials Science and Engineering, 1, 6-11.
|
[38]
|
Jamalian, M. (2015) An Investigation of Structural, Magnetic and Microwave Properties of Strontium Hexaferrite Nanoparticles Prepared by a Sol-Gel Process with Doping Sn and Tb. Journal of Magnetism and Magnetic Materials, 378, 217-220.
https://doi.org/10.1016/j.jmmm.2014.11.047
|
[39]
|
Zhong, W., Ding, W., Zhang, N., Hong, J., Yan, Q. and Du, Y. (1997) Key Step in Synthesis of Ultrafine BaFe12O19 by Sol-Gel Technique. Journal of Magnetism and Magnetic Materials, 168, 196-202. https://doi.org/10.1016/S0304-8853(96)00664-6
|
[40]
|
Ninad, B., Patil, D., Shelka, A.R., Deshpande, N.G. and Puri, V.R. (2015) Structural, Dielectric and Magnetic Properties of Nickel Substituted Cobalt Ferrite Nanoparticles: Effect of Nickel Concentration. AIP Advances, 5, Article ID: 097166.
|
[41]
|
Alange, R.C., Khirade, P.P., Birajdar, S.D., Humbe, A.V. and Jadhav, K.M. (2016) Structural, Magnetic and Dielectric Properties of Al-Cr Co-Substituted M-Type Barium Hexaferrite Nanoparticles. Journal of Molecular Structure, 1106, 460-467.
https://doi.org/10.1016/j.molstruc.2015.11.004
|
[42]
|
Mahmood, S.H., Jaradat, F.S., Lehlooh, A.F. and Hammoudeh, A. (2014) Structural Properties and Hyperfine Interactions in Co-Zn Y-Type Hexaferrites Prepared by Sol-Gel Method. Ceramics International, 40, 5231-5236.
https://doi.org/10.1016/j.ceramint.2013.10.092
|
[43]
|
Abbas, W., Ahmad, I., Kanwal, M., Murtaza, G., Ali, I., Khan, M.A., Akhtar, M.N. and Ahmad, M. (2015) Structural and Magnetic Behavior of Pr-Substituted M-Type Hexagonal Ferrites Synthesized by Sol-Gel Auto-Combustion for a Variety of Applications. Journal of Magnetism and Magnetic Materials, 374, 187-191.
https://doi.org/10.1016/j.jmmm.2014.08.029
|
[44]
|
Thompson, S., Shirtcliffe, N.J., O’Keefe, E.S., Appleton, S. and Perry, C.C. (2005) Synthesis of SrCoxTixFe(12−2x)O19 through Sol-Gel Auto-Ignition and Its Characterisation. Journal of Magnetism and Magnetic Materials, 297, 100-1007.
https://doi.org/10.1016/j.jmmm.2004.10.102
|
[45]
|
Meng, Y., He, M., Zeng, Q., Jiao, D., Shukla, S., Ramanujan, R. and Liu, Z. (2014) Synthesis of Barium Ferrite Ultrafine Powders by a Sol-Gel Combustion Method Using Glycine Gels. Journal of Alloys and Compounds, 583, 220-225.
https://doi.org/10.1016/j.jallcom.2013.08.156
|
[46]
|
Bahadur, D., Rajakumar, S. and Kumar, A. (2006) Influence of Fuel Ratios on Auto Combustion Synthesis of Barium Ferrite Nano Particles. Journal of Chemical Sciences, 118, 15-21. https://doi.org/10.1007/BF02708761
|
[47]
|
Shi, L., Zeng, C., Jin, T., Wang, T. and Tsabaki, N. (2012) A Sol-Gel Auto-Combustion Method to Prepare Cu/ZnO Catalysis for Low Temp. Methanol Synthesis, 2, 2569-2577.
|
[48]
|
Byrappa, K. and Yoshimura, M. (2001) Handbook of Hydrothermal Technology. Noyes Publications, Park Ridge.
|
[49]
|
Liu, Wang, J., Gan, L.M. and Ng, S.C. (1999) Improving the Magnetic Properties of Hydrothermally Synthesized Barium Ferrite. Journal of Magnetism and Magnetic Materials, 195, 452-459. https://doi.org/10.1016/S0304-8853(99)00123-7
|
[50]
|
Ataie, A., Harris, I. and Ponton, C. (1995) Magnetic Properties of Hydrothermally Synthesized Strontium Hexaferrite as a Function of Synthesis Conditions. Journal of Materials Science, 30, 1429-1433. https://doi.org/10.1007/BF00375243
|
[51]
|
Primc, D., Makovec, D., Lisjak, D. and Drofenik, M. (2009) Hydrothermal Synthesis of Ultrafine Barium Hexaferrite Nanoparticles and the Preparation of Their Stable Suspensions. Nanotechnology, 20, 315-605.
https://doi.org/10.1088/0957-4484/20/31/315605
|
[52]
|
Drofenik, M., Ban, I., Makovec, D., Makovec, A., Jaglicic, Z., Hanzel, D. and Lisjak, D. (2011) The Hydrothermal Synthesis of Super-Paramagnetic Barium Hexaferrite Particles. Materials Chemistry and Physics, 127, 415-419.
https://doi.org/10.1016/j.matchemphys.2011.02.037
|
[53]
|
Joshi, N., Grewal, G.S., Shrinet, V., Pratap, A. and Buch, N.J. (2010) Synthesis and Characterization of Nano-Barium Titanate Prepared by Hydrothermal Process. Integrated Ferroelectrics, 115, 142-148. https://doi.org/10.1080/10584587.2010.496614
|
[54]
|
Ahmed, T.T., Rahmanand, I.Z. and Rahman, M.A. (2004) Study on the Properties of the Copper Substituted NiZn Ferrites. Proceedings of the International Conference in Advances in Materials and Processing Technologies, 153-154, 797-803.
https://doi.org/10.1016/j.jmatprotec.2004.04.188
|
[55]
|
Nakamura Rao, T., Okanoand, Y. and Miura, S. (1998) Interfacial Diffusion between Ni-Zn-Cu Ferrite and Ag during Sintering. Journal of Materials Science, 33, 1091-1094. https://doi.org/10.1023/A:1004344719076
|
[56]
|
Sankaranarayanan, V., Pankhurst, Q., Dickson, D. and Johnson, C. (1993) Ultrafine Particles of Barium Ferrite from a Citrate Precursor. Journal of Magnetism and Magnetic Materials, 120, 73-75. https://doi.org/10.1016/0304-8853(93)91290-N
|
[57]
|
Sankaranarayanan, V. and Khan, D. (1996) Mechanism of the Formation of Nanoscale M-Type Barium Hexaferrite in the Citrate Precursor Method. Journal of Magnetism and Magnetic Materials, 153, 337-346.
https://doi.org/10.1016/0304-8853(95)00537-4
|
[58]
|
Sankaranarayanan, V., Pankhurst, Q., Dickson, D. and Johnson, C. (1993) An Investigation of Particle Size Effects in Ultrafine Barium Ferrite. Journal of Magnetism and Magnetic Materials, 125, 199-208.
https://doi.org/10.1016/0304-8853(93)90838-S
|
[59]
|
Shankar, V., Ahmad, T. and Ganguli, A.K. (2004) Investigation of Ba2−xSrxTiO4: Structural Aspects and Dielectric Properties. Bulletin of Materials Science, 27, 421-427. https://doi.org/10.1007/BF02708558
|
[60]
|
Arendt, R.H. (1973) The Molten Salt Synthesis of Single Domain BaFe12O19 and SrFe12O19 Crystals. Journal of Solid State Chemistry, 8, 339-347.
https://doi.org/10.1016/S0022-4596(73)80031-3
|
[61]
|
Chin, T.S., Hsu, S. and Deng, M. (1993) Barium Ferrite Particulates Prepared by a Salt-Melt Method. Journal of Magnetism and Magnetic Materials, 120, 64-68.
https://doi.org/10.1016/0304-8853(93)91288-I
|
[62]
|
Kimura, T. (2011) Molten Salt Synthesis of Ceramic Powders. In: Advances in Ceramics, IntechOpen, London, 75-100. https://doi.org/10.5772/20472
|
[63]
|
Topal, U. (2012) Improvement of the Remanence Properties and the Weakening of Interparticle Interactions in BaFe12O19 Particles by B2O3 Addition. Physica B: Condensed Matter, 407, 2058-2062. https://doi.org/10.1016/j.physb.2012.02.004
|
[64]
|
Topal, U. (2012) Towards Further Improvements of the Magnetization Parameters of B2O3-Doped BaFe12O19 Particles: Etching with Hydrochloric Acid. Journal of Superconductivity and Novel Magnetism, 25, 1485-1488.
https://doi.org/10.1007/s10948-012-1486-4
|
[65]
|
Mohsen, Q. (2010) Barium Hexaferrite Synthesis by Oxalate Precursor Route. Journal of Alloys and Compounds, 500, 125-128.
https://doi.org/10.1016/j.jallcom.2010.03.230
|
[66]
|
Topal, U., Ozkan, H. and Dorosinskii, L. (2007) Finding Optimal Fe/Ba Ratio to Obtain Single Phase BaFe12O19 Prepared by Ammonium Nitrate Melt Technique. Journal of Alloys and Compounds, 428, 17-21.
https://doi.org/10.1016/j.jallcom.2006.03.047
|
[67]
|
Topal, U., Ozkan, H. and Sozeri, H. (2004) Synthesis and Characterization of Nanocrystalline BaFe12O19 Obtained at 850 °C by Using Ammonium Nitrate Melt. Journal of Magnetism and Magnetic Materials, 284, 416-422.
https://doi.org/10.1016/j.jmmm.2004.07.009
|
[68]
|
El-Sayed, S., Meaz, T., Amer, M. and El Shersaby, H. (2013) Magnetic Behavior and Dielectric Properties of Aluminum Substituted M-Type Barium Hexaferrite. Physica B: Condensed Matter, 426, 137-143. https://doi.org/10.1016/j.physb.2013.06.026
|
[69]
|
Soman, V.V., Nanoti, V. and Kulkarni, D. (2013) Dielectric and Magnetic Properties of Mg-Ti Substituted Barium Hexaferrite. Ceramics International, 39, 5713-5723.
https://doi.org/10.1016/j.ceramint.2012.12.089
|
[70]
|
Bsoul, I. and Mahmood, S. (2010) Magnetic and Structural Properties of BaFe12−xGaxO19 Nanoparticles. Journal of Alloys and Compounds, 489, 110-114.
https://doi.org/10.1016/j.jallcom.2009.09.024
|
[71]
|
Yu, H.F. (2013) BaFe12O19 Powder with High Magnetization Prepared by Acetone-Aided Coprecipitation. Journal of Magnetism and Magnetic Materials, 341, 79-85. https://doi.org/10.1016/j.jmmm.2013.04.030
|
[72]
|
Pashkova, E., Solovyova, E., Kotenko, I., Kolodiazhnyi, T. and Belous, A. (2011) Effect of Preparation Conditions on Fractal Structure and Phase Transformations in the Synthesis of Nanoscale M Type Barium Hexaferrite. Journal of Magnetism and Magnetic Materials, 323, 2497-2503. https://doi.org/10.1016/j.jmmm.2011.05.026
|
[73]
|
Kaur, T. and Srivastava, A. (2013) Effect of pH on Magnetic Properties of Doped Barium Hexaferrite. International Journal of Research in Mechanical Engineering & Technology, 3, 171-173.
|
[74]
|
Khademi, F., Poorbafrani, A., Kameli, P. and Salamati, H. (2012) Structural, Magnetic and Microwave Properties of Eu-Doped Barium Hexaferrite Powders. Journal of Superconductivity and Novel Magnetism, 25, 525-531.
https://doi.org/10.1007/s10948-011-1323-1
|
[75]
|
Li, Y., Wang, Q.Z. and Yang, H. (2009) Synthesis, Characterization and Magnetic Properties on Nanocrystalline BaFe12O19 Ferrite. Current Applied Physics, 9, 1375-1380.
https://doi.org/10.1016/j.cap.2009.03.002
|
[76]
|
Dursun, S., Topkaya, R., Akdogan, N. and Alkoy, S. (2012) Comparison of the Structural and Magnetic Properties of Submicron Barium Hexaferrite Powders Prepared by Molten Salt and Solid State Calcination Routes. Ceramics International, 38, 3801-3806. https://doi.org/10.1016/j.ceramint.2012.01.028
|
[77]
|
Liu, Y., Drew, M.G., Liu, Y., Wang, J. and Zhang, M. (2010) Preparation, Characterization and Magnetic Properties of the Doped Barium Hexaferrites BaFe12−2xCox/2Znx/2SnxO19, x = 0.0 2.0. Journal of Magnetism and Magnetic Materials, 322, 814-818. https://doi.org/10.1016/j.jmmm.2009.11.009
|
[78]
|
Yamauchi, T., Tsukahara, Y., Sakata, T., Mori, H., Chikata, T., Katoh, S. and Wada, Y. (2009) Barium Ferrite Powders Prepared by Microwave-Induced Hydrothermal Reaction and Magnetic Property. Journal of Magnetism and Magnetic Materials, 321, 8-11. https://doi.org/10.1016/j.jmmm.2008.07.005
|
[79]
|
Kitakami, O., Goto, K. and Sakurai, T. (1988) A Study of the Magnetic Domains of Isolated Fine Particles of Ba Ferrite. Japanese Journal of Applied Physics, 27, 2274-2277. https://doi.org/10.1143/JJAP.27.2274
|
[80]
|
Hirayama, T., Ru, Q., Tanki, T. and Tonomura, A. (1993) Observation of Magnetic-Domain States of Barium Ferrite Particles by Electron Holography. Applied Physics Letters, 63, 418. https://doi.org/10.1063/1.110011
|
[81]
|
Went, J.J., Rathenau, G.W., Gorter, E.W. and Van Oosterhout, G.W. (1952) Hexagonal Iron-Oxide Compounds as Permanent-Magnet Materials. Physical Review Journals Archive, 86, 424. https://doi.org/10.1103/PhysRev.86.424.2
|
[82]
|
Brahma, P., Giri, A.K., Chakravorty, D., Roy, M. and Bahadur, D. (1992) Magnetic Properties of As2O3- and Sb2O3-Doped Ba-M Hexagonal Ferrites Prepared by the Sol-Gel Method. Journal of Magnetism and Magnetic Materials, 117, 163-168.
https://doi.org/10.1016/0304-8853(92)90306-9
|
[83]
|
Li, C.J., Wang, B. and Wang, J.-N. (2012) Magnetic and Microwave Absorbing Properties of Electrospun Ba(1−x)LaxFe12O19 Nanofibers. Journal of Magnetism and Magnetic Materials, 324, 1305-1311. https://doi.org/10.1016/j.jmmm.2011.11.016
|
[84]
|
Dhage, V.N., Mane, M.L., Babrekar, M.K., Kale, C.M. and Jadhav, K.M. (2011) Influence of Chromium Substitution on Structural and Magnetic Properties of BaFe12O19 Powder Prepared by Sol-Gel Auto Combustion Method. Journal of Alloys and Compounds, 509, 4394-4398. https://doi.org/10.1016/j.jallcom.2011.01.040
|
[85]
|
Lee, J., Hong, Y.-K., Lee, W., Abo, G.S., Park, J., Neveu, N., Seong, W.-M., Park, S.-H. and Ahn, W.-K. (2012) Soft M-Type Hexaferrite for Very High Frequency Miniature Antenna Applications. Journal of Applied Physics, 111, 07A520.
https://doi.org/10.1063/1.3679468
|
[86]
|
Rai, G.M., Iqbal, M.A. and Kubra, K.T. (2010) Effect of Ho3+ Substitutions on the Structural and Magnetic Properties of BaFe12O19 Hexaferrites. Journal of Alloys and Compounds, 495, 229-233. https://doi.org/10.1016/j.jallcom.2010.01.133
|
[87]
|
Litsardakis, G., Manolakis, J. and Efthimiadis, K. (2007) Structural and Magnetic Properties of Barium Hexaferrites with Gd-Co Substitution. Journal of Alloys and Compounds, 427, 194-198. https://doi.org/10.1016/j.jallcom.2006.02.044
|
[88]
|
Litsardakis, G., Manolakis, J., Serletis, C. and Efthimiadis, K.G. (2007) Structural and Magnetic Properties of Barium-Gadolinium Hexaferrites. Journal of Magnetism and Magnetic Materials, 310, e884-e886.
https://doi.org/10.1016/j.jmmm.2006.10.1107
|
[89]
|
Iqbal, M.J. and Farooq, S. (2010) Impact of Pr-Ni Substitution on the Electrical and Magnetic Properties of Chemically Derived Nanosized Strontium-Barium Hexaferrites. Journal of Alloys and Compounds, 505, 560-567.
https://doi.org/10.1016/j.jallcom.2010.06.073
|
[90]
|
Verwey, E.J.W. and Boer, J.H. (1936) Cation Arrangement in a Few Oxides with Crystal Structures of the Spinel Type. Recueil des Travaux Chimiques des Pays-Bas, 55, 531-540. https://doi.org/10.1002/recl.19360550608
|
[91]
|
Singh, V.P. (2015) Study of Substituted M-Type Barium Nanohexaferrites Synthesized via Sol-Gel Auto Combustion Technique. PhD Dissertation, Himachal Pradesh University, Shimla.
|