[1]
|
Toda F. ,et al. (2001)Development of Solvent-Free Organic Synthetic Method Fine Chemical 30, 5-15.
|
[2]
|
Toda F. ,et al. (2001)Development of Solvent Free Organic Synthetic Methods (2) Fine Chemical 30, 11-18.
|
[3]
|
Toda F. ,et al. (2013)Solvent-Free Organic Synthesis Shokubai 43, 29-33.
|
[4]
|
Wang, G.-W. (2013) Mechanochemical Organic Synthesis, Chemical Society Reviews, 42, 7668-7700. https://doi.org/10.1039/c3cs35526h
|
[5]
|
Hernandez, J.G., Avila-Ortiz, C.G. and Juaristi, E. (2014) Useful Chemical Activation Alternatives in Solvent-Free Organic Reactions. In: Knochel, P. and Molander, G.A., Eds., Comprehensive Organic Synthesis, 2nd Edition, 9, Elsevier B.V., Amsterdam, 287-314.
|
[6]
|
Perin, G., Alves, D., Jacob, R.G., Barcellos, A.M., Soares, L.K. and Lenardao, E.J. (2016) Synthesis of Organochalcogen Compounds Using Non-Conventional Reaction Media. ChemistrySelect, 1, 205-258. https://doi.org/10.1002/slct.201500031
|
[7]
|
Do, J.-L. and Friscic, T. (2017) Chemistry 2.0: Developing a New, Solvent-Free System of Chemical Synthesis Based on Mechanochemistry. Synlett, 28, 2066-2092. https://doi.org/10.1055/s-0036-1590854
|
[8]
|
Loupy, A., Petit, A., Hamelin, J., Texier-Boullet, F., Jacquault, P. and Mathe, D. (1998) New Solvent-Free Organic Synthesis Using Focused Microwaves. Synthesis, 1998, 1213-1234. https://doi.org/10.1055/s-1998-6083
|
[9]
|
Varma, R.S. (1999) Solvent-Free Organic Syntheses. Green Chemistry, 1, 43-55. https://doi.org/10.1039/a808223e
|
[10]
|
Varma, R.S. (2001) Solvent-Free Accelerated Organic Syntheses Using Microwaves. Pure and Applied Chemistry, 73, 193-198. https://doi.org/10.1351/pac200173010193
|
[11]
|
Koshima H. ,et al. (2002)Use of Microwave in Organic Synthesis Kagakukogyo 53, 786-791.
|
[12]
|
Bai, L. and Wang, J.-X. (2005) Environmentally Friendly Suzuki Aryl-Aryl Cross-Coupling Reaction. Current Organic Chemistry, 9, 535-553. https://doi.org/10.2174/1385272053544407
|
[13]
|
Koshima H. ,et al. (2005)Microwave-Assisted Solvent-Free Organic Synthesis Fine Chemical 34, 27-32.
|
[14]
|
Horikoshi S. ,et al. (2009)Microwave Frequency Effect on Organic Synthesis Material Technology 27, 143-150.
|
[15]
|
Pistara, V., Rescifina, A., Chiacchio, M.A. and Corsaro, A. (2014) Use of Microwave Heating in the Synthesis of Heterocycles from Carbohydrates. Current Organic Chemistry, 18, 417-445. https://doi.org/10.2174/13852728113176660146
|
[16]
|
Maddila, S., Jonnalagadda, S.B., Gangu, K.K. and Maddila, S.N. (2017) Recent Advances in the Synthesis of Pyrazole Derivatives Using Multicomponent Reactions. Current Organic Synthesis, 14, 634-653. https://doi.org/10.2174/1570179414666161208164731
|
[17]
|
Serpone, N. and Colarusso, P. (1994) Sonochemistry: I. Effects of Ultrasound on Heterogeneous Chemical Reactions—A Useful Tool to Generate Radicals and to Examine Reaction Mechanisms. Research on Chemical Intermediates, 20, 635-679. https://doi.org/10.1163/156856794X00261
|
[18]
|
Varma, R.S. (2007) “Greener” Chemical Syntheses Using Mechanochemical Mixing or Microwave and Ultrasound Irradiation. Green Chemistry Letters and Reviews, 1, 37-45. https://doi.org/10.1080/17518250701756991
|
[19]
|
Leonelli, C. and Mason, T.J. (2010) Microwave and Ultrasonic Processing: Now a Realistic Option for Industry. Chemical Engineering and Processing, 49, 885-900. https://doi.org/10.1016/j.cep.2010.05.006
|
[20]
|
Calvino-Casilda, V. (2014) Progress in Solvent-Free Sonochemical Assisted Synthesis of Fine and Specialty Chemicals. In: Luque, R., Ed, Green Chemistry, Nova Science, Hauppauge, 107-126.
|
[21]
|
Lupacchini, M., Mascitti, A., Giachi, G., Tonucci, L., d’Alessandro, N., Martinez, J. and Colacino, E. (2017) Sonochemistry in Non-Conventional, Green Solvents or Solvent-Free Reactions. Tetrahedron, 73, 609-653. https://doi.org/10.1016/j.tet.2016.12.014
|
[22]
|
Tanaka, K. and Toda, F. (2000) Solvent-Free Organic Synthesis. Chemical Reviews, 100, 1025-1074. https://doi.org/10.1021/cr940089p
|
[23]
|
Nagendrappa, G. (2002) Organic Synthesis under Solvent-Free Condition: An Environmentally Benign Procedure I. Resonance, 7, 59-68. https://doi.org/10.1007/BF02835544
|
[24]
|
Nagendrappa, G. (2002) Organic Synthesis under Solvent-Free Condition: An Environmentally Benign Procedure II. Resonance, 7, 64-47. https://doi.org/10.1007/BF02868200
|
[25]
|
Ramamurthy, V. and Sivaguru, J. (2016) Supramolecular Photochemistry as a Potential Synthetic Tool: Photocycloaddition. Chemical Reviews, 116, 9914-9993. https://doi.org/10.1021/acs.chemrev.6b00040
|
[26]
|
Bigelow, L.A. and Eatough, H. (1928) Benzalaniline. Organic Syntheses, 8, 22-23. https://doi.org/10.15227/orgsyn.008.0022
|
[27]
|
Uematsu, N., Fujii, A., Hashiguchi, S., Ikariya, T. and Noyori, R. (1996) Asymmetric Transfer Hydrogenation of Imines. Journal of the American Chemical Society, 118, 4916-4917. https://doi.org/10.1021/ja960364k
|
[28]
|
Hashiguchi, S., Uematsu, N. and Noyori, R. (1997) Asymmetric Reduction of Imines. Journal of Synthetic Organic Chemistry, 55, 99-109. https://doi.org/10.5059/yukigoseikyokaishi.55.99
|
[29]
|
Mao, J. and Baker, D.C. (1999) A Chiral Rhodium Complex for Rapid Asymmetric Transfer Hydrogenation of Imines with High Enantioselectivity. Organic Letters, 1, 841-843. https://doi.org/10.1021/ol990098q
|
[30]
|
Li, W., Hou, G., Chang, M. and Zhang, X. (2009) Highly Efficient and Enantioselective Iridium-Catalyzed Asymmetric Hydrogenation of N-Arylimines. Advanced Synthesis & Catalysis, 351, 3123-3127. https://doi.org/10.1002/adsc.200900692
|
[31]
|
Mrsic, N., Minnaard, A.J., Feringa, B.L. and de Vries, J.G (2009) Iridium/Monodentate Phosphoramidite Catalyzed Asymmetric Hydrogenation of N-Aryl Imines. Journal of the American Chemical Society, 131, 8358-8359. https://doi.org/10.1021/ja901961y
|
[32]
|
Han, Z., Wang, Z., Zhang, X. and Ding, K. (2009) Spiro[4,4]-1,6-nonadiene-Based Phosphine-Oxazoline Ligands for Iridium-Catalyzed Enantioselective Hydrogenation of Ketimines. Angewandte Chemie, International Edition, 48, 5345-5349. https://doi.org/10.1002/anie.200901630
|
[33]
|
Hou, G., Tao, R., Sun, Y., Zhang, X. and Gosselin, F. (2010) Iridium-Monodentate Phosphoramidite-Catalyzed Asymmetric Hydrogenation of Substituted Benzophenone N-H Imines. Journal of the American Chemical Society, 132, 2124-2125. https://doi.org/10.1021/ja909583s
|
[34]
|
Baeza, A. and Pfaltz, A. (2010) Iridium-Catalyzed Asymmetric Hydrogenation of Imines. Chemistry—A European Journal, 16, 4003-4009. https://doi.org/10.1002/chem.200903418
|
[35]
|
Tsutsumi K. ,et al. (2013)Synthesis of Optically Active Amine Compounds by Asymmetric Hydrogenation of the Imines The Chemical Times 2013, 8-11.
|
[36]
|
Berg M.A. ,et al. (1925)The Bromine Addition Products of the Schiff Bases Bulletin de la Societe Chimique de France 37, 637-641.
|
[37]
|
Jiang, L., Jin, L., Tian, H., Yuan, X., Yu, X. and Xu, Q. (2011) Direct and Mild Palladium-Catalyzed Aerobic Oxidative Synthesis of Imines from Alcohols and Amines under Ambient Conditions. Chemical Communications, 47, 10833-10835. https://doi.org/10.1039/c1cc14242a
|
[38]
|
Villani, F.J., King, M.S. and Papa, D. (1951) Substituted Tertiary Amines. Journal of the American Chemical Society, 73, 5916-5917. https://doi.org/10.1021/ja01156a562
|
[39]
|
Montalvo-Gonzalez, R. and Ariza-Castolo, A. (2003) Molecular Structure of Di-aryl-aldimines by Multinuclear Magnetic Resonance and X-Ray Diffraction. Journal of Molecular Structure, 655, 375-389. https://doi.org/10.1016/S0022-2860(03)00279-5
|
[40]
|
Garkani-Nejad, Z. and Poshteh-Shirani, M. (2011) Modeling of 13C NMR Chemical Shifts of Benzene Derivatives Using the RC-PC-ANN Method: A Comparative Study of Original Molecular Descriptors and Multivariate Image Analysis Descriptors. Canadian Journal of Chemistry, 89, 598-607. https://doi.org/10.1139/v11-041
|
[41]
|
Auwers, K. and Ottens, B. (1924) Configuration of Stereoisomeric Oximes and the Structure of Oxime N-Ethers and Aci-Nitro Derivatives. Berichte der Deutschen Chemischen Gesellschaft (Abteilung) B: Abhandlungen, 57B, 446-461.
|
[42]
|
Roe, A. and Montgomery, J.A. (1953) Kinetics of the Catalytic Hydrogenation of Certain Schiff Bases. Journal of the American Chemical Society, 75, 910-912. https://doi.org/10.1021/ja01100a040
|
[43]
|
Neumann, W.P. (1963) Organometallic Molecular Compounds. I. Complexes of Ethers and Amines with Organoaluminum Amides. Justus Liebigs Annalen der Chemie, 667, 1-11. https://doi.org/10.1002/jlac.19636670102
|
[44]
|
Ukwueze, A.C., Udoh, J.E. and Emokpae, T.A. (2001) Kinetic Studies of Solvolysis Reactions of Schiff Base Complexes of Zinc (II), Cadmium (II) and Mercury (II). Journal of Chemical Society of Nigeria, 26, 211-216.
|
[45]
|
Hartley, J.H., Phillips, M.D. and James, T.D. (2002) Saccharide-Accelerated Hydrolysis of Boronic Acid Imines. New Journal of Chemistry, 26, 1228-1237. https://doi.org/10.1039/b202793c
|
[46]
|
Marinescu, L.G., Pedersen, C.M. and Bols, M. (2005) Safe Radical Azidonation Using Polystyrene Supported Diazidoiodate(I). Tetrahedron, 61, 123-127. https://doi.org/10.1016/j.tet.2004.10.040
|
[47]
|
Okimoto, M., Takahashi, Y., Numata, K., Nagata, Y. and Sasaki, G. (2005) Electrochemical Oxidation of Benzylic Amines into the Corresponding Imines in the Presence of Catalytic Amounts of KI. Synthetic Communications, 35, 1989-1995. https://doi.org/10.1081/SCC-200066648
|
[48]
|
Esteruelas, M.A., Honczek, N., Olivan, M., Onate, E. and Valencia, M. (2011) Direct Access to POP-Type Osmium(II) and Osmium(IV) Complexes: Osmium a Promising Alternative to Ruthenium for the Synthesis of Imines from Alcohols and Amines. Organometallics, 30, 2468-2471. https://doi.org/10.1021/om200290u
|
[49]
|
Floyd, D.M., Stein, P., Wang, Z., Liu, J., Castro, S., Clark, J.A., Connelly, M., Zhu, F., Holbrook, G., Matheny, A., Sigal, M.S., Min, J., Dhinakaran, R., Krishnan, S., Bashyum, S., Knapp, S. and Guy, R.K. (2016) Hit-to-Lead Studies for the Antimalarial Tetrahydroisoquinolone Carboxanilides. Journal of Medicinal Chemistry, 59, 7950-7962. https://doi.org/10.1021/acs.jmedchem.6b00752
|
[50]
|
Keglevich, G., Fehervari, A. and Csontos, I. (2011) A Study on the Kabachnik-Fields Reaction of Benzaldehyde, Propylamine, and Diethyl Phosphite by in Situ Fourier Transform IR Spectroscopy. Heteroatom Chemistry, 22, 599-604. https://doi.org/10.1002/hc.20676
|
[51]
|
Lawson, J.R., Wilkins, L.C. and Melen, R.L. (2017) Tris(2,4,6-trifluorophenyl)borane: An Efficient Hydroboration Catalyst. Chemistry—A European Journal, 23, 10997-11000. https://doi.org/10.1002/chem.201703109
|
[52]
|
Chakraborti, A.K., Bhagat, S. and Rudrawar, S. (2004) Magnesium Perchlorate as an Efficient Catalyst for the Synthesis of Imines and Phenylhydrazones. Tetrahedron Letters, 45, 7641-7644. https://doi.org/10.1016/j.tetlet.2004.08.097
|
[53]
|
Kuster, G.J.T., van Berkom, L.W.A., Kalmoua, M., Van Loevezijn, A., Sliedregt, L.A.J.M., Van Steen, B.J., Kruse, C.G., Rutjes, F.P.J.T. and Scheeren, H.W. (2006) Synthesis of Spirohydantoins and Spiro-2,5-diketopiperazines via Resin-Bound Cyclic α,α-Disubstituted α-Amino Esters. Journal of Combinatorial Chemistry, 8, 85-94. https://doi.org/10.1021/cc050072s
|
[54]
|
Roy, U.K. and Roy, S. (2007) Pd0/SnII Promoted Barbier-Type Allylation and Crotylation of Sulfonimines, Tetrahedron Letters, 48, 7177-7180. https://doi.org/10.1016/j.tetlet.2007.07.201
|
[55]
|
Zhang, Y. and Han, M. (2011) Solvent-Free Addition Reaction of Propargyl Bromide and Aldimines Mediated by Activated Zinc Powder. Journal of Chemical Research, 35, 568-570. https://doi.org/10.3184/174751911X13166274023054
|
[56]
|
Liu, H., Chuah, G.-K. and Jaenicke, S. (2012) N-Alkylation of Amines with Alcohols over Alumina-Entrapped Ag Catalysts Using the “Borrowing Hydrogen” Methodology. Journal of Catalysis, 292, 130-137. https://doi.org/10.1016/j.jcat.2012.05.007
|
[57]
|
Guo, Q., Wang, W., Teng, W., Chen, L., Wang, Y. and Shen, B. (2012) Oxidant Effect of H2O2 for the Syntheses of Quinoline Derivatives via One-Pot Reaction of Aniline and Aldehyde. Synthetic Communications, 42, 2574-2584. https://doi.org/10.1080/00397911.2011.563022
|
[58]
|
Zhu, M. (2014) Ruthenium-Catalyzed Direct Reductive Amination in HCOOH/NEt3 Mixture. Catalysis Letters, 144, 1568-1572. https://doi.org/10.1007/s10562-014-1314-5
|
[59]
|
Perrone, S., Salomone, A., Caroli, A., Falcicchio, A., Citti, C., Cannazza, G. and Troisi, L. (2014) Stereoselective Synthesis of α-Alkylidene β-Oxo Amides by Palladium-Catalyzed Carbonylation. European Journal of Organic Chemistry, 2014, 5932-5938. https://doi.org/10.1002/ejoc.201402666
|
[60]
|
Gopalakrishnan, M., Sureshkumar, P., Kanagarajan, V., Thanusu, J. and Govindaraju, R. (2005) Silica Gel Supported Sodium Hydrogen Sulfate as an Efficient and Reusable Heterogeneous Catalyst for the Synthesis of Imines in Solvent-Free Conditions under Microwave Irradiation. Journal of Chemical Research, 2005, 299-303. https://doi.org/10.3184/0308234054323977
|
[61]
|
Ding, Y., Zhang, X., Zhang, D., Chen, Y., Wu, Z., Wang, P., Xue, W., Song, B. and Yang, S. (2015) Copper-Catalyzed Oxidative Amidation between Aldehydes and Arylamines under Mild Conditions. Tetrahedron Letters, 56, 831-833. https://doi.org/10.1016/j.tetlet.2014.12.113
|
[62]
|
Ruano, J.L.G., Aleman, J., Alonso, I., Parra, A., Marcos, V. and Aguirre, J. (2007) π-π Stacking versus Steric Effects in Stereoselectivity Control: Highly Diastereoselective Synthesis of Syn-1,2-Diarylpropylamines. Chemistry—A European Journal, 13, 6179-6195. https://doi.org/10.1002/chem.200601893
|
[63]
|
Wang, C., Huang, K., Wang, J., Wang, H., Liu, L., Chang, W. and Li, J. (2015) Synthesis of Tetrasubstituted Pyrroles from Homopropargylic Amines via a Sonogashira Coupling/Intramolecular Hydroamination/Oxidation Sequence. Advanced Synthesis & Catalysis, 357, 2795-2802. https://doi.org/10.1002/adsc.201500350
|