[1]
|
Karmakar, S., Kumar, S., Rinaldi, R. and Maruccio, G. (2011) Nano-Electronics and Spintronics with Nanoparticles. Journal of Physics: Conference Series, 292, Article ID: 012002. https://doi.org/10.1088/1742-6596/292/1/012002
|
[2]
|
Weller, D. and Doerner, M.F. (2000) Extremely High-Density Longitudinal Magnetic Recording Media. Reviews on Advanced Materials Science, 30, 611-644.
https://doi.org/10.1146/annurev.matsci.30.1.611
|
[3]
|
Sio, L.D., Placido, T., Comparelli, R., Curri, M.L., Striccoli, M., Tabiryan, N. and Bunning, T.J. (2015) Next-Generation Thermo-Plasmonic Technologies and Plasmonic Nanoparticles in Optoelectronics. Progress in Quantum Electronics, 41, 23-70. https://doi.org/10.1016/j.pquantelec.2015.03.001
|
[4]
|
Muhammed, M.A.H., Döblinger, M. and Rodríguez-Fernández, J. (2015) Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances. Journal of the American Chemical Society, 137, 11666-11677.
https://doi.org/10.1021/jacs.5b05337
|
[5]
|
Wang, A., Yin, H., Ren, M., Lu, H., Xue, J. and Jiang, T. (2010) Preparation of Nickel Nanoparticles with Different Sizes and Structures and Catalytic Activity in the Hydrogenation of p-nitrophenol. New Journal of Chemistry, 34, 708-713.
https://doi.org/10.1039/b9nj00657e
|
[6]
|
Morozov, Y.G., Belousova, O.V. and Kuznetsov, M.V. (2011) Preparation of Nickel Nanoparticles for Catalytic Applications. Inorganic Materials, 47, 36-40.
https://doi.org/10.1134/S0020168510121027
|
[7]
|
Ruan, Y., Wang, C. and Jiang, J. (2016) Nanostructured Ni Compounds as Electrode Materials towards High-Performance Electrochemical Capacitors. Journal of Materials Chemistry A, 4, 14509-14538. https://doi.org/10.1039/C6TA05104A
|
[8]
|
Gaouyat, L., He, Z., Colomer, J.-F., Schryvers, D., Mirabella, F. and Deparis, O. (2015) Linking Optical Properties and Nanostructure of NiCrOx Cermet Nanocomposite for Solar Thermal Application, Springer. Nano-Structures for Optics and Photonics, 2015, 497.
|
[9]
|
Schmidt, H. (2001) Nanoparticles by Chemical Synthesis, Processing to Materials and Innovative Applications. Applied Organometallic Chemistry, 15, 331-343.
https://doi.org/10.1002/aoc.169
|
[10]
|
Huang, K.-C. and Ehrman, S.H. (2007) Synthesis of Iron Nanoparticles via Chemical Reduction with Palladium Ion Seeds. Langmuir, 23, 1419-1426.
https://doi.org/10.1021/la0618364
|
[11]
|
Goia, D.V. (2004) Preparation and Formation Mechanisms of Uniform Metallic Particles in Homogeneous Solutions. Journal of Materials Chemistry, 14, 451-458.
https://doi.org/10.1039/b311076a
|
[12]
|
Tabrizi, N.S., Xu, Q., van der Pers, N.M., Lafont, U. and Schmidt-Ott, A. (2008) Synthesis of Mixed Metallic Nanoparticles by Spark Discharge. Journal of Nanoparticle Research, 11, 1209-1218. https://doi.org/10.1007/s11051-008-9568-8
|
[13]
|
Förster, H., Wolfrum, C. and Peukert, W. (2012) Experimental Study of Metal Nanoparticle Synthesis by an Arc Evaporation/Condensation Process. Journal of Nanoparticle Research, 14, 926-932. https://doi.org/10.1007/s11051-012-0926-1
|
[14]
|
Daw, M. and Baskes, M. (1984) Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals. Physical Review B, 29, 6443-6453. https://doi.org/10.1103/PhysRevB.29.6443
|
[15]
|
Ju, S.P., Lin, J.S. and Lee, W.J. (2004) A Molecular Dynamics Study of the Tensile Behaviour of Ultrathin Gold Nanowires. Nanotechnology, 15, 1221-1225.
https://doi.org/10.1088/0957-4484/15/9/019
|
[16]
|
Liew, K.M., He, X.Q. and Wong, C.H. (2004) On the Study of Elastic and Plastic Properties of Multi-Walled Carbon Nanotubes under Axial Tension using Molecular Dynamics Simulation. ACTA Material, 52, 2521-2527.
https://doi.org/10.1016/j.actamat.2004.01.043
|
[17]
|
Contescu, C.I. and Putyera, K. (2009) Dekker Encyclopedia of Nanoscience and Nanotechnology. 2nd Edition, CRC Press, Boca Raton.
|
[18]
|
Cao, G. and Wang, Y. (2011) Nanostructures & Nanomaterials: Synthesis, Properties, and Applications. World Scientific Series in Nanoscience and Nanotechnology, Vol. 2, World Scientific, Hackensack.
|
[19]
|
Mitin, V.V., Sementsov, D.I. and Vagidov, N.Z. (2010) Quantum Mechanics for Nanostructures. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511845161
|
[20]
|
Roduner, E. (2007) Nanoscopic Materials: Size-Dependent Phenomena. Royal Society of Chemistry, Cambridge.
|
[21]
|
Cleri, F. and Rosato, V. (1993) Tight-Binding Potentials for Transition Metals and Alloys. Physical Review B, 48, 22-33. https://doi.org/10.1103/PhysRevB.48.22
|
[22]
|
Chamati, H. and Papanicolaou, N.I. (2004) Second-Moment Interatomic Potential for Gold and Its Alication to Molecular-Dynamics Simulations. Journal of Physics: Condensed Matter, 16, 8399-8407. https://doi.org/10.1088/0953-8984/16/46/025
|
[23]
|
Chamati, H. (2011) Journal of Materials Science & Technology, 19, 42-51.
|
[24]
|
Martin, T.P. (1996) Shells of Atoms. Physics Reports, 273, 199-241.
https://doi.org/10.1016/0370-1573(95)00083-6
|
[25]
|
Karaman, I., Sehitoglu, H., Chumlyakov, Y.I., Maier, H.J. and Kireeva, I.V. (2001) The Effect of Twinning and Slip on the Bauschinger Effect of Hadfield Steel Single Crystals. Metallurgical and Materials Transactions A, 32, 695-706.
|
[26]
|
Wang, Z.L., et al. (2001) Nano-Scale Mechanics of Nanotubes, Nanowires, and Nanobelts. Advanced Engineering Materials, 3, 657-661.
https://doi.org/10.1002/1527-2648(200109)3:9<657::AID-ADEM657>3.0.CO;2-0
|
[27]
|
Erts, D. and Olin, H. (2003) Metallic and Semiconducting Nanowires: Properties and Architectures. Proceedings of SPIE, 5123, 248-258.
https://doi.org/10.1117/12.517030
|
[28]
|
Yang, Z. and Zhao, Y.-P. (2007) Size-Dependent Elastic Properties of Ni Nanofilms by Molecular Dynamics Simulation. Surface Review and Letters, 14, 661-665.
https://doi.org/10.1142/S0218625X07010032
|
[29]
|
Lu, J. and Szpunar, J.A. (1997) Applications of the Embedded-Atom Method to Glass Formation and Crystallization of Liquid and Glass Transition-Metal Nickel. Philosophical Magazine A, 75, 1057-1066.
https://doi.org/10.1080/01418619708214010
|
[30]
|
Qi, Y., Çagin, T., Johnson, W.L. and Goddard III, W.A. (2001) Melting and Crystallization in Ni Nanoclusters: The Mesoscale Regime. The Journal of Chemical Physics, 115, 385-394. https://doi.org/10.1063/1.1373664
|
[31]
|
Wen, Y.-H., Zhu, Z.-Z., Zhu, R. and Shao, G.-F. (2004) Molecular Dynamics Study of the Mechanical Behavior of Nickel Nanowire: Strain Rate Effects. Physica E: Lowdimensional Systems and Nanostructures, 25, 47-54.
https://doi.org/10.1016/j.physe.2004.06.048
|
[32]
|
Zhang, Y., Wang, L. and Wang, W. (2007) Thermodynamic, Dynamic and Structural Relaxation in Supercooled Liquid and Glassy Ni below the Critical Temperature. Journal of Physics: Condensed Matter, 19, Article ID: 196106.
https://doi.org/10.1088/0953-8984/19/19/196106
|
[33]
|
Kien, P.H. (2014) Study of Structural and Phase Transition of Nickel Metal. ISRN Materials Science, 2014, Article ID: 253627.
|
[34]
|
Andriotis, A.N., Fthenakis, Z.G. and Menon, M. (2007) Correlated Variation of Melting and Curie Temperatures of Nickel Clusters. Physical Review B, 75, Article ID: 073413. https://doi.org/10.1103/PhysRevB.75.073413
|
[35]
|
Lu, H.M., Li, P.Y., Cao, Z.H. and Meng, X.K. (2009) Size-, Shape-, and Dimensionality-Dependent Melting Temperatures of Nanocrystals. The Journal of Physical Chemistry C, 113, 7598-7602. https://doi.org/10.1021/jp900314q
|
[36]
|
Karaman, I., Sehitoglu, H., Chumlyakov, Y.I., Maier, H.J. and Kireeva, I.V. (2001) Extrinsic Stacking Faults and Twinning in Hadfield Manganese Steel Single Crystals. Scripta Materialia, 44, 337-343.
https://doi.org/10.1016/S1359-6462(00)00600-X
|
[37]
|
Tadmor, E.B., Bernstein, N. and Mech, J. (2004) A First-Principles Measure for the Twinnability of FCC Metals. Journal of the Mechanics and Physics of Solids, 52, 2507-2519. https://doi.org/10.1016/j.jmps.2004.05.002
|
[38]
|
Bernstein, N. and Tadmor, E.B. (2004) Tight-Binding Calculations of Stacking Energies and Twinnability in FCC Metals. Physical Review B, 69, Article ID: 094116. https://doi.org/10.1103/PhysRevB.69.094116
|
[39]
|
Macmillan, N.H. and Kelly, A. (1972) The Mechanical Properties of Perfect Crystals I. The Ideal Strength. Proceedings of the Royal Society (London) A, 330, 291-308.
https://doi.org/10.1098/rspa.1972.0146
|
[40]
|
Parinello, M. and Rahman, A. (1981) Polymorphic Transitions in Single Crystals A New Molecular Dynamics Method. Journal of Applied Physics, 52, 7182-7190.
https://doi.org/10.1063/1.328693
|
[41]
|
Komandori, R. and Chadrasekaran, N. (2002) Molecular Dynamic Simulations of Uniaxial Tension at Nanoscale of Semiconductor Materials for Micro-Electro-Mechanical Systems (MEMS) Applications. Materials Science and Engineering: A, 340, 58-67. https://doi.org/10.1016/S0921-5093(02)00156-9
|
[42]
|
Komandori, R. and Chadrasekaran, N. (2001) Molecular Dynamics (MD) Simulation of Uniaxial Tension of Some Single-Crystal Cubic Metals at Nanolevel. International Journal of Mechanical Sciences, 43, 2260-2337.
|
[43]
|
Park, H.S., Gallb, K. and Zimmerman, J.A. (2006) Deformation of FCC Nanowires by Twinning and Slip. Journal of the Mechanics and Physics of Solids, 54, 1862-1881. https://doi.org/10.1016/j.jmps.2006.03.006
|
[44]
|
Park, H.S. and Zimmerman, J.A. (2005) Modelling Inelasticity and Failure in Gold Nanowires. Physical Review B, 72, Article ID: 054106.
|
[45]
|
Wu, H.A. (2006) Molecular Dynamics Study of the Mechanics of Metal Nanowires at Finite Temperature. European Journal of Mechanics—A/Solids, 25, 370-377.
https://doi.org/10.1016/j.euromechsol.2005.11.008
|
[46]
|
Wu, H.A. (2006) Molecular Dynamics Study on Mechanics of Metal Nanowire. Mechanics Research Communications, 33, 9-16.
https://doi.org/10.1016/j.mechrescom.2005.05.012
|
[47]
|
Golovnev, I.F., Golovneva, E.I. and Fomin, V.M. (2006) Molecular-Dynamic Modeling of Mechanical Properties of Free Defect Metal Nanocrystals. Computational Materials Science, 37, 336-348. https://doi.org/10.1016/j.commatsci.2005.09.005
|
[48]
|
Yuan, L., Shan, D. and Guo, B. (2007) Molecular Dynamics Simulation of Tensile Deformation of Nano-Single Crystal Aluminum. Journal of Materials Processing Technology, 184, 1-5. https://doi.org/10.1016/j.jmatprotec.2006.10.042
|
[49]
|
Branicio, P.S. and Rino, J.P. (2000) Large Deformation and Amorphization of Ni Nanowires under Uniaxial Strain: A Molecular Dynamics Study. Physical Review B, 62, 16950-16955. https://doi.org/10.1103/PhysRevB.62.16950
|
[50]
|
Ikeda, H., Qi, Y., Cagin, T., Samwer, K., Johnson, W.L. and Goddard, W.A. (1999) Strain Rate Induced Amorphization in Metallic Nanowires. Physical Review Letters, 82, 2900-2903. https://doi.org/10.1103/PhysRevLett.82.2900
|
[51]
|
Landman, U., Luedtke, W.D., Salisbury, B.E. and Whetten, R.L. (1996) Reversible Manipulations of Room Temperature Mechanical and Quantum Transport Properties in Nanowire Junctions. Physical Review Letters, 77, 1362-1365.
https://doi.org/10.1103/PhysRevLett.77.1362
|
[52]
|
Walsh, P., Li, W., Kalia, R.K., Nakano, A., Vashishta, P. and Saini, S. (2001) Structural Transformation, Amorphization, and Fracture in Nanowires: A Multimillion-Atom Molecular Dynamics Study. Applied Physics Letters, 78, 3328-3330.
https://doi.org/10.1063/1.1374237
|
[53]
|
Tsuzuki, H., Branicio, P.S. and Rino, J.P. (2007) Structural Characterization of Deformed Crystals by Analysis of Common Atomic Neighborhood. Computer Physics Communications, 177, 518-523. https://doi.org/10.1016/j.cpc.2007.05.018
|
[54]
|
Nosé, S. (1984) The Journal of Chemical Physics, 81.
|
[55]
|
Hoover, W.G. (1985) Canonical Dynamics: Equilibrium Phase-Space Distributions. Physical Review A, 31, 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695
|
[56]
|
Evans, D.J. and Holian, B.L. (1985) The Nose-Hoover Thermostat. The Journal of Chemical Physics, 83, 4069-4074. https://doi.org/10.1063/1.449071
|
[57]
|
Todd, B.D. and Lynden-Bell, R.M. (1993) Surface and Bulk Properties of Metals Modelled with Sutton-Chen Potentials. Surface Science, 281, 191-206.
https://doi.org/10.1016/0039-6028(93)90868-K
|
[58]
|
Sutton, A.P. and Chen, J. (1990) Long-Range Finnis-Sinclair Potentials. Philosophical Magazine Letters, 61, 139-146.
|
[59]
|
Daw, M.S. and Baskes, M.I. (1983) Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Physical Review Letters, 50, 1285-1288.
https://doi.org/10.1103/PhysRevLett.50.1285
|
[60]
|
Daw, M.S. and Baskes, M.I. (1984) Embedded-Atom Method: Derivation and Alication to Impurities, Surfaces, and Other Defects in Metals. Physical Review B, 29, 6443-6453. https://doi.org/10.1103/PhysRevB.29.6443
|
[61]
|
Çagin, T., Qi, Y., Li, H., Kimura, Y., Ikeda, H., Johnson, W.L. and Goddard III, W.A. (1999) Materials Research Society, 554, 43-48.
|
[62]
|
Kimura, Y., Qi, Y., Çagin, T. and Goddard III, W.A. (1998) The Quantum Sutton-Chen Many-Body Potential for Properties of FCC Metals.
|
[63]
|
Akbarzadeh, H. and Parsafar, G.A. (2009) A Molecular-Dynamics Study of Thermal and Physical Properties of Platinum Nanoclusters. Fluid Phase Equilibria, 280, 16-21. https://doi.org/10.1016/j.fluid.2009.02.018
|
[64]
|
Qi, Y., Çagin, T., Kimura, Y. and Goddard III, W.A. (1999) Molecular-Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals: Cu-Ag and Cu-Ni. Physical Review B, 59, 3527-3533.
https://doi.org/10.1103/PhysRevB.59.3527
|
[65]
|
Sankaranarayanan, S.K.R.S., Bhethanabotla, V.R. and Joseph, B. (2005) Molecular Dynamics Simulation Study of the Melting of Pd-Pt Nanoclusters. Physical Review B, 71, Article ID: 195415. https://doi.org/10.1103/PhysRevB.71.195415
|
[66]
|
Fernández-Navarro, C. and Mejía-Rosales, S. (2013) Molecular Dynamics of Free and Graphite-Supported Pt-Pd Nanoparticles. Advances in Nanoparticles, 2, 323-328. https://doi.org/10.4236/anp.2013.24044
|
[67]
|
Kart, H.H., Uludogan, M., Çagin, T. and Tomak, M. (2004) Kluwer Academic Publishers, Dordrecht, Boston, London, 487-493.
|
[68]
|
Sankaranarayanan, S.K.R.S., Bhethanabotla, V.R. and Joseph, B. (2005) Molecular Dynamics Simulation Study of the Melting of Pd-Pt Nanoclusters. Physical Review B, 71, Article ID: 195415. https://doi.org/10.1103/PhysRevB.71.195415
|
[69]
|
Honeycutt, J.D. and Andersen, H.C. (1987) Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters. The Journal of Physical Chemistry, 91, 4950-4963. https://doi.org/10.1021/j100303a014
|
[70]
|
Tsuzuki, H., Branicio, P.S. and Rino, J.P. (2007) Structural Characterization of Deformed Crystals by Analysis of Common Atomic Neighborhood. Computer Physics Communications, 177, 518-523. https://doi.org/10.1016/j.cpc.2007.05.018
|
[71]
|
Berendsen, H.J.C., Postma, J.P.M. and van Gunsteren, W.F. (1984) Molecular Dynamics with Coupling to an External Bath. The Journal of Chemical Physics, 81, 3684-3690. https://doi.org/10.1063/1.448118
|
[72]
|
Koh, S.J.A. and Lee, H.P. (2006) Molecular Dynamics Simulation of Size and Strain Rate Dependent Mechanical Response of FCC Metallic Nanowires. Nanotechnology, 17, 3451-3467. https://doi.org/10.1088/0957-4484/17/14/018
|
[73]
|
Nguyen, T.D., Nguyen, C.C. and Tran, V.H. (2017) Molecular Dynamics Study of Microscopic Structures, Phase Transitions and Dynamic Crystallization in Ni Nanoparticles. RSC Advances, 7, 25406-25413. https://doi.org/10.1039/C6RA27841H
|
[74]
|
Zharkov, S., Zhigalov, V. and Frolov, G. (1996) A Hexagonal Close-Packed Phase in Nickel Films. The Physics of Metals and Metallography, 81, 328-330.
|
[75]
|
Mi, Y., Yuan, D., Liu, Y., Zhang, J. and Xiao, Y. (2005) Synthesis of Hexagonal Close-Packed Nanocrystalline Nickel by a Thermal Reduction Process. Materials Chemistry and Physics, 89, 359-361.
https://doi.org/10.1016/j.matchemphys.2004.09.012
|
[76]
|
Chiang, R.-T., Chiang, R.-K. and Shieu, F.-S. (2014) Emergence of Interstitial-Atom-Free HCP Nickel Phase during the Thermal Decomposition of Ni3C Nanoparticles. RSC Advances, 4, 19488-19494. https://doi.org/10.1039/c4ra01874e
|
[77]
|
Tian, C.S., Qian, D., Wu, D., He, R.H., Wu, Y.Z., Tang, W.X., Yin, L.F., Shi, Y.S., Dong, G.S., Jin, X.F., Jiang, X.M., Liu, F.Q., Qian, H.J., Sun, K., Wang, L.M., Rossi, G., Qiu, Z.Q. and Shi, J. (2005) Body-Centered-Cubic Ni and Its Magnetic Properties. Physical Review Letters, 94, Article ID: 137210.
https://doi.org/10.1103/PhysRevLett.94.137210
|
[78]
|
Brewer, L. (1968) Bonding and Structures of Transition Metals. Science, 161, 115-122. https://doi.org/10.1126/science.161.3837.115
|
[79]
|
Kelchner, C.L., Plimpton, S.J. and Hamilton, J.C. (1998) Dislocation Nucleation and Defect Structure during Surface Indentation. Physical Review B, 58, 11085-11088.
https://doi.org/10.1103/PhysRevB.58.11085
|
[80]
|
Li, J. (2003) AtomEye: An Efficient Atomistic Configuration Viewer. Modelling and Simulation in Materials Science and Engineering, 11, 173-177.
https://doi.org/10.1088/0965-0393/11/2/305
|
[81]
|
Ackland, G.J. and Jones, A.P. (2006) Applications of Local Crystal Structure Measures in Experiment and Simulation. Physical Review B, 73, Article ID: 054104.
https://doi.org/10.1103/PhysRevB.73.054104
|
[82]
|
Steinhardt, P.J., Nelson, D.R. and Ronchetti, M. (1983) Bond-Orientational Order in Liquids and Glasses. Physical Review B, 28, 784-805.
https://doi.org/10.1103/PhysRevB.28.784
|
[83]
|
Wikipedia Niken. https://vi.wikipedia.org/wiki/Niken
|
[84]
|
Pabst, W., Gregorova, E. and Ticha, G. (2006) Elasticity of Porous Ceramics—A Critical Study of Modulus-Porosity Relations. Journal of the European Ceramic Society, 26, 1085-1097. https://doi.org/10.1016/j.jeurceramsoc.2005.01.041
|
[85]
|
Pickup, R. (1997) Effect of Porosity on Young’s Modulus of a Porcelain. British Ceramic Transactions, 96, 96-98.
|
[86]
|
Ito, S., Taniguchi, T., Ono, M. and Uemura, K. (2012) Network and Void Structures for Glasses with a Higher Resistance to Crack Formation. Journal of Non-Crystalline Solids, 358, 3453-3458.
https://doi.org/10.1016/j.jnoncrysol.2012.02.039
|
[87]
|
Chang, W.J. and Fang, T.H. (2003) Influence of Temperature on Tensile and Fatigue Behavior of Nanoscale Coer using Molecular Dynamics Simulation. Journal of Physics and Chemistry of Solids, 64, 1279-1283.
https://doi.org/10.1016/S0022-3697(03)00130-6
|
[88]
|
Pethica, J.B., Hutchings, R. and Oliver, W.C. (1983) Hardness Measurement at Penetration Depths as Small as 20 nm. Philosophical Magazine A, 48, 593-606.
https://doi.org/10.1080/01418618308234914
|
[89]
|
Selinger, R.L.B., Wang, Z.G. and Gelbart, W.M. (1991) Statistical-Thermodynamic Approach to Fracture. Physical Review A, 43, 4396-4400.
https://doi.org/10.1103/PhysRevA.43.4396
|
[90]
|
Lynden-Bell, R.M. (1994) Computer Simulations of Fracture at the Atomic Level. Science, 263, 1704-1705. https://doi.org/10.1126/science.263.5154.1704
|
[91]
|
Lynden-Bell, R.M. (1995) A Simulation Study of Induced Disorder, Failure and Fracture of Perfect Metal Crystals under Uniaxial Tension. Journal of Physics: Condensation of Matter, 7, 4603-4624. https://doi.org/10.1088/0953-8984/7/24/003
|
[92]
|
Rentsch, R. and Inasaki, I. (1995) Investigation of Surface Integrity by Molecular Dynamics Simulation. Annals of CIRP, 44, 295-298.
https://doi.org/10.1016/S0007-8506(07)62329-4
|