[1]
|
Taubenberger, J. K. and Morens, D. M., (2006) 1918 Influenza: the mother of all pandemics, Emerg. Infect. Dis., 12(1), 15–22.
|
[2]
|
Trifonov, V., Khiabanian, H., and Rabadan, R., (2009) Geo-graphic dependence, surveillance, and origins of the 2009 in-fluenza A (H1N1) virus, N. Engl. J. Med., 361, 115–119.
|
[3]
|
Centers for Disease Control and Prevention (CDC), (2009) Update: Drug susceptibility of swine-origin influenza A (H1N1) viruses, MMWR Morb Mortal Wkly Rep 2009, 58, 433–435.
|
[4]
|
We?wer, M., Chen, C. C., Kemp, M. M., and Linhard, R. J., (2009) Synthesis and biological evaluation of non-hydrolyzable 1,2,3-triazole-linked sialic acid derivatives as neuraminidase inhibitors, European Journal of Organic Chemistry, 16, 2587.
|
[5]
|
Maurer-Stroh, S., Ma, J., Lee, R. T. C., Sirota, F. L., and Frank, E., (2009) Mapping the sequence mutations of the 2009 H1N1 influenza A virus neuraminidase relative to drug and antibody binding sites, Biol. Direct., 4, 18.
|
[6]
|
Wang, S. Q., Du, Q. S., Huang, R. B., Zhang, D. W., and Chou, K. C., (2009) Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus, Biochemical and Biophysical Research Com-munications, 386(3), 432–6.
|
[7]
|
Cover, T. A. and Thomas, J. A., (1991) Elements of informa-tion theory, John Wiley and Sons, NewYork.
|
[8]
|
MacKay, D., (2003) Information theory, inference, and learn-ing algorithms, Cambridge University Press.
|
[9]
|
Zhou, H. B., Yu, Z. J., Hu, Y., Tu, J. G., Zou, W., Peng, Y. P., Zhu, J. P., Li, Y. T., Zhang, A. D., Yu, Z. N., Ye, Z. P., Chen, H. C., and Jin, M. L., (2009) The special neuraminidase stalk-motif responsible for increased virulence and pathogene-sis of H5N1 influenza A virus, PLoS One, 4(7), e6277.
|
[10]
|
Katoh, K., Kuma, K., Toh, H., and Miyata, T., (2005) MAFFT version 5: Improvement in accuracy of multiple sequence alignment, Nucleic. Acids. Res., 33, 511–518.
|
[11]
|
Liu, Y., Eyal, E., and Bahar, I., (2008) Analysis of correlated mutations in HIV-1 protease using spectral clustering, Bioin-formatics, 24(10), 1243–1250.
|
[12]
|
Colman, P. M., Hoyne, P. A., and Lawrence, M. C., (1993) Sequence and structure alignment of paramyxovirus hemag-glutinin-neuraminidase with influenza virus neuraminidase, J. Virol., 67, 2972–2980.
|
[13]
|
Du, X. J., Wang, Z., Wu, A. P., Song, L., Cao, Y., Hang, H. Y., and Jiang, T. J., (2008) Networks of genomic co-occurrence capture characteristics of human influenza A (H3N2) evolution, Genome. Res., 18, 178–187.
|
[14]
|
Xia, Z., Jin, G. L., Zhu J., and Zhou, R. H., (2009) Using a mutual information-based site transition network to map the genetic evolution of influenza A/H3N2 virus, Bioinformatics, 25(18), 2309–2317.
|
[15]
|
Huang, J. W., King, C. C., and Yang, J. M., (2009) Co- evolu-tion positions and rules for antigenic variants of human influ-enza A/H3N2 viruses, BMC Bioinformatics, 10(Suppl 1), S41.
|
[16]
|
Breiman, L., (2001) Random forests, Machine Learning, 45(1), 5–32.
|
[17]
|
Shi, T., Seligson, D., Belldegrun, A. S., Palotie, A., and Horvath, S., (2005) Tumor classification by tissue microarray profiling: Random forest clustering applied to renal cell carci-noma, Mod. Pathol., 18(4), 547–57.
|
[18]
|
Cox, T. F. and Cox, M. A. A., (2001), Multidimensional scaling, Chapman and Hall.
|
[19]
|
http://www.stat.berkeley.edu/~breiman/RandomForests/.
|
[20]
|
Xu, X. J., Zhu, X. Y., Dwek, R. A., Stevens, J., and Wilson, I. A., (2008) Structural characterization of the 1918 influenza virus H1N1 neuraminidase, Journal of Virology, 82(21), 10493–10501.
|
[21]
|
Kumar, S., Nei, M., Dudley, J., and Tamura, K., (2008) MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences, Brief Bioinformatics, 9, 299–306.
|
[22]
|
Li, W. and Godzik, A., (2006) Cd-hit: A fast program for clus-tering and comparing large sets of protein or nucleotide se-quences, Bioinformatics, 22, 1658–1659.
|