[1]
|
Prasad, R. (2010) Multidrug and extensively drug-resis- tant TB (M/XDR-TB): Problems and solutions. Indian Journal of Tuberculosis, 57, 180-191.
|
[2]
|
Ahmad, S. (2010) New approaches in the diagnosis and treatment of latent tuberculosis infection. Respiratory Research, 11, 169. doi:10.1186/1465-9921-11-169
|
[3]
|
(2010) WHO global tuberculosis control report 2010. Summary. Central European Journal of Public Health, 18, 237.
|
[4]
|
Sendagire, I., Schim Van der Loeff, M., Mubiru, M., Konde-Lule, J. and Cobelens, F. (2010) Long delays and missed opportunities in diagnosing smear-positive pul- monary tuberculosis in Kampala, Uganda: A cross-sec- tional study. PLoS One, 5, e14459.
doi:10.1371/journal.pone.0014459
|
[5]
|
Bailey, S.L., Roper, M.H., Huayta, M., Trejos, N., Lopez Alarcon, V. and Moore, D.A. (2010) Missed opportunities for tuberculosis diagnosis. The International Journal of Tuberculosis and Lung Disease, 15, 205-210.
|
[6]
|
Liu, Q., Chen, X., Hu, C., Zhang, R., Yue, J., Wu, G., et al. (2010) Serum protein profiling of smear-positive and smear-negative pulmonary tuberculosis using SELDI- TOF mass spectrometry. Lung, 188, 15-23.
doi:10.1007/s00408-009-9199-6
|
[7]
|
Malen, H., De Souza, G.A., Pathak, S., Softeland, T. and Wiker, H.G. (2011) Comparison of membrane proteins of Mycobacterium tuberculosis H37Rv and H37Ra strains. BMC Microbiology, 11, 18. doi:10.1186/1471-2180-11-18
|
[8]
|
Bhavsar, A.P., Auweter, S.D. and Finlay, B.B. (2010) Pro- teomics as a probe of microbial pathogenesis and its mo- lecular boundaries. Future Microbiology, 5, 253-265.
doi:10.2217/fmb.09.114
|
[9]
|
Boshoff, H.I. and Lun, D.S. (2010) Systems biology ap- proaches to understanding mycobacterial survival mecha- nisms. Drug Discovery Today: Disease Mechanisms, 7, 75-82. doi:10.1016/j.ddmec.2010.09.008
|
[10]
|
Shui, W., Petzold, C.J., Redding, A., Liu, J., Pitcher, A., Sheu, L., et al. (2011) Organelle membrane proteomics reveals differential influence of mycobacterial lipogly- cans on macrophage phagosome maturation and auto- phagosome accumulation. Journal of Proteome Research, 10, 339-348. doi:10.1021/pr100688h
|
[11]
|
Mehaffy, C., Hess, A., Prenni, J.E., Mathema, B., Krei- swirth, B. and Dobos, K.M. (2010) Descriptive proteomic analysis shows protein variability between closely related clinical isolates of Mycobacterium tuberculosis. Pro- teomics, 10, 1966-1984. doi:10.1002/pmic.200900836
|
[12]
|
Kunnath-Velayudhan, S., Salamon, H., Wang, H.Y., Davi- dow, A.L., Molina, D.M., Huynh, V.T., et al. (2010) Dy- namic antibody responses to the Mycobacterium tuber- culosis proteome. Proceedings of the National Academy of Sciences of the United States of America, 107, 14703- 14708. doi:10.1073/pnas.1009080107
|
[13]
|
Deenadayalan, A., Heaslip, D., Rajendiran, A.A., Velayu- dham, B.V., Frederick, S., Yang, H.L., et al. (2010) Im- munoproteomic identification of human T cell antigens of Mycobacterium tuberculosis that differentiate healthy contacts from tuberculosis patients. Molecular & Cellular Proteomics, 9, 538-549.
doi:10.1074/mcp.M900299-MCP200
|
[14]
|
de Souza, G.A., Fortuin, S., Aguilar, D., Pando, R.H., McEvoy, C.R., van Helden, P.D., et al. (2010) Using a label-free proteomics method to identify differentially abundant proteins in closely related hypo- and hyperviru- lent clinical Mycobacterium tuberculosis Beijing isolates. Molecular & Cellular Proteomics, 9, 2414-2423.
doi:10.1074/mcp.M900422-MCP200
|
[15]
|
Festa, R.A., McAllister, F., Pearce, M.J., Mintseris, J., Burns, K.E., Gygi, S.P. and Darwin, K.H. (2010) Prokaryotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis [corrected]. PLoS One, 5, 8589.
doi:10.1371/journal.pone.0008589
|
[16]
|
Poulsen, C., Akhter, Y., Jeon, A.H., Schmitt-Ulms, G., Meyer, H.E., Stefanski, A., et al. (2010) Proteome-wide identification of mycobacterial pupylation targets. Molecular Systems Biology, 6, 386.
doi:10.1038/msb.2010.39
|
[17]
|
Watrous, J., Burns, K., Liu, W.T., Patel, A., Hook, V., Bafna, V., et al. (2010) Expansion of the mycobacterial “PUPylome”. Molecular Biosystems, 6, 376-385.
doi:10.1039/b916104j
|
[18]
|
Prisic, S., Dankwa, S., Schwartz, D., Chou, M.F., Lo- casale, J.W., Kang, C.M., et al. (2010) Extensive phos- phorylation with overlapping specificity by Mycobacte- rium tuberculosis serine/threonine protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 107, 7521-7526.
doi:10.1073/pnas.0913482107
|
[19]
|
Wolfe, L.M., Mahaffey, S.B., Kruh, N.A. and Dobos K.M. (2010) Proteomic definition of the cell wall of Mycobacterium tuberculosis. Journal of Proteome Research, 9, 5816-5826. doi:10.1021/pr1005873
|
[20]
|
Berredo-Pinho, M., Kalume, D.E., Correa, P.R., Gomes, L.H., Pereira, M.P., Silva, R.F., et al. ( 2011) Proteomic profile of culture filtrate from the Brazilian vaccine strain Mycobacterium bovis BCG Moreau compared to M. bo- vis BCG Pasteur. BMC Microbiology, 11, 80.
doi:10.1186/1471-2180-11-80
|
[21]
|
Zheng, J., Wei, C., Zhao, L., Liu, L., Leng, W., Li, W. and Jin, Q. (2011) Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing poten- tial membrane protein complexes of Mycobacterium bo- vis bacillus Calmette-Guerin. BMC Genomics, 12, 40.
doi:10.1186/1471-2164-12-40
|
[22]
|
Kashyap, R.S., Saha, S.M., Nagdev, K.J., Kelkar, S.S., Purohit, H.J., Taori, G.M. and Daginawala, H.F. (2010) Diagnostic markers for tuberculosis ascites: A prelimi- nary study. Biomark Insights, 5, 87-94.
|
[23]
|
Desouza, G.A., Fortuin, S., Aguilar, D., Pando, R.H., Mc Evoy, C.R., van Helden, P.D., et al. (2010) Using a label-free proteomic method to identify differentially abun- dant proteins in closely related hypo- and hyper-virulent clinical Mycobacterium tuberculosis Beijing isolates. Mo- lecular & Cellular Proteomics, 9, 2414-2423.
doi:10.1074/mcp.M900422-MCP200
|
[24]
|
Tanaka, T., Sakurada, S., Kano, K., Takahashi, E., Yasuda, K., Hirano, H., et al. (2011) Identification of tuberculo- sis-associated proteins in whole blood supernatant. BMC Infectious Diseases, 11, 71. doi:10.1186/1471-2334-11-71
|
[25]
|
Estorninho, M., Smith, H., Thole, J., Harders-Westerveen, J., Kierzek, A., Butler, R.E., et al. (2010) ClgR regulation of chaperone and protease systems is essential for Myco- bacterium tuberculosis parasitism of the macrophage. Microbiology, 156, 3445-3455.
doi:10.1099/mic.0.042275-0
|
[26]
|
White, M.J., Savaryn, J.P., Bretl, D.J., He, H., Penoske, R.M., Terhune, S.S. and Zahrt, T.C. (2011) The HtrA-like serine protease PepD interacts with and modulates the mycobacterium tuberculosis 35-kDa antigen outer envelope protein. PLoS One, 6, 18175.
doi:10.1371/journal.pone.0018175
|
[27]
|
Kruh, N.A., Troudt, J., Izzo, A., Prenni, J. and Dobos, K.M. (2010) Portrait of a pathogen: The Mycobacterium tuberculosis proteome in vivo. PLoS One, 5, 13938.
doi:10.1371/journal.pone.0013938
|
[28]
|
Lee, B.Y., Jethwaney, D., Schilling, B., Clemens, D.L., Gibson, B.W. and Horwitz, M.A. (2010) The mycobacterium bovis bacille calmette-guerin phagosome proteome. Molecular & Cellular Proteomics, 9, 32-53.
doi:10.1074/mcp.M900396-MCP200
|
[29]
|
Prados-Rosales, R., Baena, A., Martinez, L.R., Luque- Garcia, J., Kalscheuer, R., Veeraraghavan, U., et al. (2011) Mycobacteria release active membrane vesicles that mo- dulate immune responses in a TLR2-dependent manner in mice. The Journal of Clinical Investigation, Epub ahead of print. doi:10.1172/JCI44261
|
[30]
|
van Dissel, J.T., Arend, S.M., Prins, C., Bang, P., Ting- skov, P.N., Lingnau, K., et al. (2010) Ag85B-ESAT-6 ad- juvanted with IC31 promotes strong and long-lived My- cobacterium tuberculosis specific T cell responses in na- ive human volunteers. Vaccine, 28, 3571-3581.
doi:10.1016/j.vaccine.2010.02.094
|
[31]
|
Dannenberg, A.M., Jr. (2010) Perspectives on clinical and preclinical testing of new tuberculosis vaccines. Clinical Microbiology Reviews, 23, 781-794.
doi:10.1128/CMR.00005-10
|
[32]
|
Millington, K.A., Fortune, S.M., Low, J., Garces, A., Hin- gley-Wilson, S.M., Wickremasinghe, M., et al. (2010) Rv3615c is a highly immunodominant RD1 (Region of Difference 1)-dependent secreted antigen specific for My- cobacterium tuberculosis infection. Proceedings of the National Academy of Sciences of the United States of America, 108, 5730-5735. doi:10.1073/pnas.1015153108
|
[33]
|
Giri, P.K., Kruh, N.A., Dobos, K.M. and Schorey, J.S. (2010) Proteomic analysis identifies highly antigenic proteins in exosomes from M. tuberculosis-infected and culture filtrate protein-treated macrophages. Proteomics, 10, 3190-3202. doi:10.1002/pmic.200900840
|
[34]
|
Li, Y., Zeng, J., Shi, J., Wang, M., Rao, M., Xue, C., et al. (2010) A proteome-scale identification of novel anti- genic proteins in Mycobacterium tuberculosis toward diagnostic and vaccine development. Journal of Proteome Research, 9, 4812-4822. doi:10.1021/pr1005108
|
[35]
|
Kinnings, S.L., Xie, L., Fung, K.H., Jackson, R.M., Xie, L. and Bourne, P.E. (2010) The Mycobacterium tuberculosis drugome and its polypharmacological implications. PLoS Computational Biology, 6, 1000976.
doi:10.1371/journal.pcbi.1000976
|
[36]
|
Lucchese, G., Stufano, A. and Kanduc, D. (2010) Proposing low-similarity peptide vaccines against Mycobacterium tuberculosis. Journal of Biomedicine and Biotechnology, 832341.
|
[37]
|
Gaseitsiwe, S., Valentini, D., Mahdavifar, S., Reilly, M., Ehrnst, A. and Maeurer, M. (2010) Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1* 0401. Clinical and Vaccine Immunology, 17, 168- 175. doi:10.1128/CVI.00208-09
|