Multiwall Carbon Nanotube Modified Electrochemical Sensor for Reactive Black 5


Cyclic voltammograms of reactive black5 (RB5) at different pHs in the range 1.0 - 13.0 on multiwall carbon nanotube modified glassy carbon electrode revealed the presence of one well-defined irreversible anodic peak around 975 mV in acidic and neutral pHs. Adsorption controlled oxidation observed at acidic pH 1.0 resulted in the maximum peak current response in cyclic voltammograms. A systematic differential pulse stripping voltammetric studies were carried out using the modified electrode at pH 1.0. The accumulation parameters, accumulation potential and time were optimized for maximum adsorption of the dye which was ascertained from the SEM photographs and XRD results. The stripping parameters were optimized and calibration was made under optimum conditions. The range of study was from 0.5 ppm to 100 ppm and the lower limit of determination was 100 ppm. Five identical experiments were carried out and the RSD value obtained was 2.5% suggesting good reproducibility. The proposed method was successfully applied to determine the concentration of dye in the fabric and wastewater after dyeing.

Share and Cite:

Sreeja, V. , Sasikumar, R. , Alagarsamy, M. and Manisankar, P. (2011) Multiwall Carbon Nanotube Modified Electrochemical Sensor for Reactive Black 5. American Journal of Analytical Chemistry, 2, 814-819. doi: 10.4236/ajac.2011.27093.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, No. 6348, 1991, pp. 56-58. doi:10.1038/354056a0
[2] J. Wang, “Carbon-Nanotube Based Electrochemical Bio-sensors,” Electroanalysis, Vol. 17, No. 1, 2005, pp. 7-14. doi:10.1002/elan.200403113
[3] C. E. Banks and R. G. Compton, “New Electrode for Old from Carbon Nanotubes to Edge Plan Phyrolytic Graphite,” Analyst, Vol. 131, No. 1, 2006, pp. 15-21. doi:10.1039/b512688f
[4] J. Wang, “Nanomaterial-Based Electrochemical Biosen-sors,” Analyst, Vol. 130, No. 4, 2005, pp. 421-426. doi:10.1039/b414248a
[5] M. Valcarcel, B. M. Simonet, S. Cardenas and E. B. Suarez, “Present and Future Applications of Carbon Nanotubes to Analytical Science,” Analytical and Bio- analytical Chemistry, Vol. 382, No. 8, 2005, pp. 1783- 1790. doi:10.1007/s00216-005-3373-3
[6] Q. Honglan and Z. Chengxiao, “Simultaneous Determina- tion of Hydroquinone and Catechol at a Glassy Carbon Electrode Modified with Multiwall Carbon Nanotubes,” Electroanalysis, Vol. 17, No. 10, 2005, pp. 832-838. doi:10.1002/elan.200403150
[7] H. Zhang, C. Hu, S. Wu and S. Hu, “Enhanced Oxidation of Simvastatin at a Multi-Walled Carbon Nanotubes- Dihexadecyl Hydrogen Phosphate Composite Modified Glassy Carbon Electrode and the Application in Deter- mining Simvastatin in Pharmaceutical Dosage Forms,” Electroanalysis, Vol. 17, No. 9, 2005, pp. 749-754. doi:10.1002/elan.200403137
[8] S. L. Nathan, P. D. Randhir and J. Wang, “Comparison of the Electrochemical Reactivity of Electrodes Modified with Carbon Nanotubes from Different Sources,” Elec-troanalysis, Vol. 17, No. 1, 2005, pp. 65-72. doi:10.1002/elan.200403120
[9] K. A. Joshi, J. Tang, R. Haddon, J. Wang, W. Chen and A. Mulchandani, “A Disposable Biosensor for Organo-phosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode,” Electroanalysis, Vol. 17, No. 1, 2005, pp. 54-58. doi:10.1002/elan.200403118
[10] J. Wang, M. Musameh and Y. Lin, “Solubilization of Car-bon Nanotubes by Nafion toward the Preparation of Am-perometric Biosensors,” Journal of the American Chemi-cal Society, Vol. 125, No. 9, 2003, pp. 2408-2409. doi:10.1021/ja028951v
[11] H. X. Luo, Z. J. Shi, N. Q. Li, Z. N. Gu and Q. K. Zhuang, “Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode,” Analytical Chemistry, Vol. 73, No. 5, 2001, pp. 915-920. doi:10.1021/ac000967l
[12] F. H. Wu, G. C. Zhao and X. W. Wei, “Electrocatalytic Oxidation of Nitric Oxide at Multi-Walled Carbon Na-notubes Modified Electrode,” Electrochemistry Commu-nications, Vol. 4, No. 9, 2002, pp. 690-694. doi:10.1016/S1388-2481(02)00435-6
[13] M. Musamech, J. Wang, A. Merkoci and Y. H. Lin, “Low- Potential Stable NADH Detection at Car-bon-Nanotube- Modified Glassy Carbon Electrodes,” Electrochemistry Communications, Vol. 4, No. 10, 2002, pp. 743-752. doi:10.1016/S1388-2481(02)00451-4
[14] Y. Zhu, Z. Zhang, W. Zhao and D. Pang, “Voltammetric Behavior and Determination of Phenylephrine at a Glassy Carbon Electrode Modified with Multi-Wall Carbon Na-notubes,” Sensors and Actuators B, Vol. 119, No. 1, 2006, pp. 308-314. doi:10.1016/j.snb.2005.12.026
[15] C. Hu, C. Yang and S. Hu, “Hydrophobic Adsorption of Surfactants on Water-Soluble Carbon Nanotubes: A Sim-ple Approach to Improve Sensitivity and Antifouling Capacity of Carbon Nanotubes-Based Electrochemical Sensors,” Electrochemistry Communications, Vol. 9, No. 1, 2007, pp. 128-134. doi:10.1016/j.elecom.2006.08.055
[16] R. Vittal, H. Gomathi and K. J. Kim, “Beneficial Role of Surfactants in Electrochemistry and in the Modification of Electrodes,” Advances in Colloid and Interface Science, Vol. 119, No. 1, 2006, pp. 55-58. doi:10.1016/j.cis.2005.09.004
[17] P. Manisankar, P. L. A. Sundari, R. Sasikumar and S. P. Palaniappan, “Electroanalysis of Some Common Pe- sticides Using Conducting Polymer/Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode,” Talanta, Vol. 76, No. 5, 2008, pp. 1022-1028. doi:10.1016/j.talanta.2008.04.056
[18] P. Manisankar, P. A. Sundari and R. Sasikumar, “Square- Wave Stripping Voltam-Metric Determination of Some Organic Pollutants Using Modified Electrodes,” Interna- tional Journal of Environmental Analytical Chemistry, Vol. 89, No. 4, 2009, pp. 245-260. doi:10.1080/03067310802658440
[19] H. Zollinger, “Color Chemistry,” 2nd Edition, V. C. H. Publisher, New York, 1991.
[20] K. Venkataraman, “The Chemistry of Synthetic Dyes,” A- cademic Press, New York, 1972.
[21] E. A. Clarke and R. Anliker, “Organic Dyes and Pig-ments,” In: O. Hutzinger Ed., Handbook of Environmental Chemistry, Vol. 3, Part A, Springer-Verlag, Berlin, 1980, pp. 181-215.
[22] E. J. Weber and V. C. Stickney, “Hydrolysis Kinetics of Reactive Blue 19-Vinyl Sulfone,” Water Research, Vol. 27, No. 1, 1993, pp. 63-67. doi:10.1016/0043-1354(93)90195-N
[23] C. Chritodoultos and D. A.Vaccari, “Correlations of Per-formance for Activated Sludge Using Multiple Regression with Autocorrelation,” Water Research, Vol. 27, No. 1, 1993, pp. 51-62. doi:10.1016/0043-1354(93)90194-M
[24] R. Kalvoda and R. Parsons, “Electrochemistry in Research and Development,” Plenum Press, New York, 1985.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.