An Adaptive Fuzzy Sliding Mode Control Scheme for Robotic Systems
Abdel Badie Sharkawy, Shaaban Ali Salman
DOI: 10.4236/ica.2011.24035   PDF    HTML     7,215 Downloads   11,712 Views   Citations

Abstract

In this article, an adaptive fuzzy sliding mode control (AFSMC) scheme is derived for robotic systems. In the AFSMC design, the sliding mode control (SMC) concept is combined with fuzzy control strategy to obtain a model-free fuzzy sliding mode control. The equivalent controller has been substituted for by a fuzzy system and the uncertainties are estimated on-line. The approach of the AFSMC has the learning ability to generate the fuzzy control actions and adaptively compensates for the uncertainties. Despite the high nonlinearity and coupling effects, the control input of the proposed control algorithm has been decoupled leading to a simplified control mechanism for robotic systems. Simulations have been carried out on a two link planar robot. Results show the effectiveness of the proposed control system.

Share and Cite:

Sharkawy, A. and Salman, S. (2011) An Adaptive Fuzzy Sliding Mode Control Scheme for Robotic Systems. Intelligent Control and Automation, 2, 299-309. doi: 10.4236/ica.2011.24035.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. B. Sharkawy, H. El-Awady and K. A. F. Moustafa, “Stable Fuzzy Control for a Class of Nonlinear Systems,” Tranactions of the Institute of Measurement and Control, Vol. 25, No. 3, 2003, pp. 265-278. doi:10.1191/0142331203tm086oa
[2] J. Lin, R.-J. Lian, C.-N. Huang and W.-T. Sie, “Enhanced Fuzzy Sliding Mode Controller for Active Suspension Systems,” Mechatronics, Vol. 19, No. 7, 2009, pp. 1178-1190. doi:10.1016/j.mechatronics.2009.03.009
[3] P. C. Chen, C. W. Chen and W. L. Chiang, “GA-Based Modified Adaptive Fuzzy Sliding Mode Controller for Nonlinear Systems,” Expert Systems with Applications, Vol. 36, No. 3, 2009, pp. 5872-5879. doi:10.1016/j.eswa.2008.07.003
[4] S. Kaitwanidvilai and M. Parnichkun, “Force Control in a Pneumatic System Using Hybrid Adaptive Neuro-Fuzzy Model Reference Control,” Mechatronics, Vol. 15, No. 1, 2005, pp. 23-41. doi:10.1016/j.mechatronics.2004.07.003
[5] L.-C. Hung and H.-Y. Chung, “Decoupled Sliding-Mode with Fuzzy-Neural Network Controller for Nonlinear Systems,” International Journal of Approximate Reasoning, Vol. 46, No. 1, 2007, pp. 74-97. doi:10.1016/j.ijar.2006.08.002
[6] Y. Zhiyong, W. Jiang and M. Jiangping, “Motor-Mechanism Dynamic Model Based Neural Network Optimized Computed Torque Control of a High Speed Parallel Manipulator,” Mechatronics, Vol. 17, 2007, pp. 381-390. doi:10.1016/j.mechatronics.2007.04.009
[7] J.-J. Slotine and W. Li, “Applied Nonlinear Control,” Printice-Hall International, Inc., Upper Saddle River, 1991.
[8] V. I. Utkin, “Sliding Modes and Their Applications in Variable Structure Systems,” Mir Publishers, Moscow, 1978.
[9] V. I. Utkin, “Sliding Modes in Control and Optimization,” Springer-Verlag, Berlin, 1992.
[10] A. Harifi, A. Aghagolzadeh, G. Alizadel and M. Sadeghi, “Designing a Sliding Mode Controller for Slip Control of Antilock Brake Systems,” Transportation Research Part C, Vol. 16, No. 6, 2008, pp. 731-741. doi:10.1016/j.trc.2008.02.003
[11] B. Yao, S. P. Chan and D. Wang, “Variable Structure Adaptive Motion and Force Control of Robot Manipulator,” Automatica, Vol. 30, No. 9, 1994, pp. 1473-1477. doi:10.1016/0005-1098(94)90014-0
[12] B. Yao, S.P. Chan and D. Wang, “Unified Formulation of Variable Structure Control Schemes for Robot Manipulators,” IEEE Transactions on Automatic Control, Vol. 39, No. 2, 1994, pp. 371-376. doi:10.1109/9.272337
[13] K. Passino and S. Yurkovich, “Fuzzy Control,” Addison- Wesley Longman, Inc., Boston, 1998.
[14] R. Ordonez, J. Zumberge, J. T. Spooner and K. M. Passino, “Adaptive Fuzzy Control: Experiments and Comparative Analysis,” IEEE Transactions on Fuzzy Systems, Vol. 5, No. 2, 1997, pp. 167-188. doi:10.1109/91.580793
[15] F. H. Hsiao, C. W. Chen, Y. W. Liang, S. D. Xu and W. L. Chiang, “T-S Fuzzy Controllers for Nonlinear Interconnected TMD Systems with Multiple Time Delays,” IEEE Transactions on Circuits and Systems, Vol. 52, No. 9, 2005, pp. 1883-1893. doi:10.1109/TCSI.2005.852492
[16] F. H. Hsiao, J. D. Hwang, C. W. Chen and Z. R. Tsai, “Robust Stabilization of Nonlinear Multiple Time-Delay Large-Scale Systems via Decentralized Fuzzy Control,” IEEE Transactions on Fuzzy Systems, Vol. 13, No. 1, 2005, pp. 152-163. doi:10.1109/TFUZZ.2004.836067
[17] H. F. Ho, Y. K. Wong and A. B. Rad, “Adaptive Fuzzy Sliding Mode Control with Chattering Elimination for SISO Systems,” Simulation Modeling Practice and Theory, Vol. 17, No. 7, 2009, pp. 1199-1210. doi:10.1016/j.simpat.2009.04.004
[18] C.-C. Cheng and S.-H. Chien, “Adaptive Sliding Mode Controller Design Based on T-S Fuzzy System Models,” Automatica, Vol. 42, No. 1, 2006, pp. 1005-1010. doi:10.1016/j.automatica.2006.02.016
[19] H. F. Ho, Y. K. Wong and A. B. Rad, “Robust Fuzzy Tracking Control for Robotic Manipulators,” Simulation Modelling Practice and Theory, Vol. 15, No. 7, 2007, pp. 801-816. doi:10.1016/j.simpat.2007.04.008
[20] T.-H. S. Li and Y.-C. Huang, “MIMO Adaptive Fuzzy Terminal Sliding-Mode Controller for Robotic Manipulators,” Information Sciences, Vol. 180, No. 23, 2010, pp. 4641-4660. doi:10.1016/j.ins.2010.08.009
[21] Y. Stephaneko and C.-Y. Su, “Variable Structure Control of Robot Manipulators with Nonlinear Sliding Manifolds,” International Journal of Control, Vol. 58, No. 2, 1993, pp. 285-300. doi:10.1080/00207179308923003
[22] L. X. Wang, “Adaptive Fuzzy Systems and Control,” PTR Prentice Hall, Upper Saddle River, 1994.
[23] S.-J. Huang and W.-C. Lin, “Adaptive Fuzzy Controller with Sliding Surface for Vehicle Suspension Control,” IEEE Transactions on Fuzzy Systems, Vol. 11, No. 4, 2003, pp. 550-559. doi:10.1109/TFUZZ.2003.814845
[24] A. Poursamad and A. H. Davaie-Markazi, “Robust Adaptive Fuzzy Control of Unknown Chaotic Systems,” Applied Soft Computing, Vol. 9, No. 3, 2009, pp. 970-976. doi:10.1016/j.asoc.2008.11.014
[25] M. Roopaei, M. Zolghadri and S. Meshksar, “Enhanced Adaptive Fuzzy Sliding mode Control for Uncertain Nonlinear Systems,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 9-10, 2009, pp. 3670-3681. doi:10.1016/j.cnsns.2009.01.029

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.