[1]
|
Grillo, G., Banerjee, G., Scott-Craig, J.S. and Walton, J.D. (2010) Improving Enzymes for Biomass Conversion: A Basic Research Perspective. BioEnergy Research, 3, 82-92. https://doi.org/10.1007/s12155-009-9067-5
|
[2]
|
Zhu, L., O’Dwyer, J.P., Chang, V.S., Granda, C.B. and Holtzapple, M.T. (2008) Structural Features Affecting Biomass Enzymatic Digestibility. Bioresource Technology, 99, 3817-3828. https://doi.org/10.1016/j.biortech.2007.07.033
|
[3]
|
Taherzadeh, M.J. and Karimi, K. (2008) Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Sciences, 9, 1621-1651. https://doi.org/10.3390/ijms9091621
|
[4]
|
Krishnan, C., Sousa, L.C., Jin, M., Chang, L., Dale, B.E. and Balan, V. (2010) Alkali-Based AFEX Pretreatment for the Conversion of Sugarcane Bagasse and Cane Leaf Residues to Ethanol. Biotechnology and Bioengineering, 107, 441-450.
https://doi.org/10.1002/bit.22824
|
[5]
|
Weerachanchai, P. and Lee, J.M. (2013) Effect of Organic Solvent in Ionic Liquid on Biomass Pretreatment. ACS Sustainable Chemistry and Engineering, 1, 894-902.
https://doi.org/10.1021/sc300147f
|
[6]
|
Li, H.Y., Chen, X., Wang, C.Z., Sun, S.N. and Sun, R.C. (2016) Evaluation of the Two-Step Pretreatment with Ionic Liquids and Alkali for Enhancing Enzymatic Hydrolysis of Eucalyptus: Chemical and Anatomical Changes. Biotechnology for Biofuels, 9, 166. https://doi.org/10.1186/s13068-016-0578-y
|
[7]
|
Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodríguez, H. and Rogers, R.D. (2009) Complete Dissolution and Partial Delignification of Wood in the Ionic Liquid 1-ethyl-3-methylimidazolium Acetate. Green Chemistry, 11, 646-655.
https://doi.org/10.1039/b822702k
|
[8]
|
Brandt, A., Hallett, J.P., Leak, D.J., Murphy, R.J. and Welton, T. (2010) The Effect of the Ionic Liquid Anion in the Pretreatment of Pine Wood Chips. Green Chemistry, 12, 672-679. https://doi.org/10.1039/b918787a
|
[9]
|
Carrillo, F., Lis, M.J., Colom, X., López-Mesasa, M. and Valldeperas, J. (2005) Effect of Alkali Pretreatment on Cellulase Hydrolysis of Wheat Straw: Kinetic Study. Process Biochemistry, 40, 3360-3364. https://doi.org/10.1016/j.procbio.2005.03.003
|
[10]
|
Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D. and Osborne, J. (2007) A Comparison of Chemical Pretreatment Methods for Improving Saccharification of Cotton Stalks. Bioresource Technology, 98, 3000-3011.
https://doi.org/10.1016/j.biortech.2006.10.022
|
[11]
|
Rodríguez-Vázquez, R., Villanueva-Ventura, G. and Rios-Leal, E. (1992) Sugarcane Bagasse Pith Dry Pretreatment for Single Cell Protein Production. Bioresource Technology, 39, 17-22. https://doi.org/10.1016/0960-8524(92)90051-X
|
[12]
|
Hsu, T.A. (1996) Pretreatment of Biomass. In: Wyman, C.E., Ed., Handbook on Bioethanol, Production and Utilization: Pretreatment of Biomass, Taylor and Francis, Washington DC, 179-212.
|
[13]
|
Chandel, A.K., Antunes, F.A.F., Anjos, V., Bell, M.J.V., Rodrigues, L.N., Singh, O.V., Rosa, C.A., Pagnocca, F.C. and da Silva, S.S. (2013) Ultra-Structural Mapping of Sugarcane Bagasse after Oxalic Acid Fiber Expansion (OAFEX) and Ethanol Production by Candida shehatae and Saccharomyces cerevisiae. Biotechnology for Biofuels, 6, 4. https://doi.org/10.1186/1754-6834-6-4
|
[14]
|
Goldemberg, J. (2008) The Brazilian Biofuels Industry. Biotechnology for Biofuels, 1, 6. https://doi.org/10.1186/1754-6834-1-6
|
[15]
|
Kurian, J.K., Nair, G.R., Hussain, A. and Vijaya Raghavan, G.S. (2013) Feedstocks, Logistics and Pre-Treatment Processes for Sustainable Lignocellulosic Biorefineries: A Comprehensive Review. Renewable and Sustainable Energy Reviews, 25, 205-219.
https://doi.org/10.1016/j.rser.2013.04.019
|
[16]
|
Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S. and Young, H. (2004) Toward a Systems Approach to Understanding Plant Cell Walls. Science, 306, 2206-2211. https://doi.org/10.1126/science.1102765
|
[17]
|
Ayeni, O.A., Adeeyo, O.A., Oresegun, O.M. and Oladimeji, T.E. (2015) Compositional Analysis of Lignocellulosic Materials: Evaluation of an Economically Viable Method Suitable for Woody and Non-Woody Biomass. American Journal of Engineering Research, 4, 14-19.
|
[18]
|
Li, S., Xu, S., Liu, S., Yang, C. and Lu, Q. (2004) Fast Pyrolysis of Biomass in Free-Fall Reactor for Hydrogen-Rich Gas. Fuel Processing Technology, 85, 1201-1211. https://doi.org/10.1016/j.fuproc.2003.11.043
|
[19]
|
Miller, G.L. (1959) Use of Dinitrosalicyclic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426-428.
https://doi.org/10.1021/ac60147a030
|
[20]
|
Kristensen, J.B., Thygesen, L.G., Felby, C., Jørgensen, H. and Elder, T. (2008) Cell-Wall Structural Changes in Wheat Straw Pretreated for Bioethanol Production. Biotechnology for Biofuels, 1, 1-9. https://doi.org/10.1186/1754-6834-1-5
|
[21]
|
Lynam, J. and Coronella, C. (2015) Loblolly Pine Pretreatment by Ionic Liquid-Glycerol Mixtures. Biomass Conversion and Biorefinery, 6, 247-260.
|
[22]
|
Lynam, J.G., Chow, G.I., Hyland, P.L. and Coronella, C.J. (2016) Corn Stover Pretreatment by Ionic Liquid and Glycerol Mixtures with Their Density, Viscosity, and Thermogravimetric Properties. ACS Sustainable Chemistry and Engineering, 4, 3786-3793. https://doi.org/10.1021/acssuschemeng.6b00480
|
[23]
|
Nelson, M.L. and O’Connor, R.T. (1964) Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part II. A New Infrared Ratio for Estimation of Crystallinity in Celluloses I and II. Journal of Applied Polymer Science, 8, 1325-1341.
|
[24]
|
Oh, S.Y., Yoo, D.I., Shin, Y., Kim, H.C., Kim, H.Y., Chung, Y.S., Park, W.H. and Youk, J.H. (2005) Crystalline Structure Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide by Means of X-Ray Diffraction and FTIR Spectroscopy. Carbohydrate Research, 340, 2376-2391.
https://doi.org/10.1016/j.carres.2005.08.007
|
[25]
|
Colom, X., Carrillo, F., Nogués, F. and Garriga, P. (2003) Structural Analysis of Photodegraded Wood by Means of FTIR Spectroscopy. Polymer Degradation and Stability, 80, 543-549. https://doi.org/10.1016/S0141-3910(03)00051-X
|
[26]
|
Chandel, A.K., Antunes, F.A.F., Anjos, V., Bell, M.J.V., Rodrigues, L.N., Polikarpov, I., Azevedo, ER de., Bernardinelli, O.D., Rosa, C.A., Pagnocca, F.C. and da Silva, S.S. (2014) Multi-Scale Structural and Chemical Analysis of Sugarcane Bagasse in the Process of Sequential Acid-Base Pretreatment and Ethanol Production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnology for Biofuels, 7, 63.
https://doi.org/10.1186/1754-6834-7-63
|
[27]
|
Liu, C.G., Qin, J.C., Liu, L.Y., Jin, B.W. and Bai, F.W. (2016) Combination of Ionic Liquid and Instant Catapult Steam Explosion Pretreatments for Enhanced Enzymatic Digestibility of Rice Straw. ACS Sustainable Chemistry and Engineering, 4, 577-582. https://doi.org/10.1021/acssuschemeng.5b00990
|
[28]
|
Sun, R.C. and Tomkinson, J. (2002) Characterization of Hemicelluloses Obtained by Classical and Ultrasonically Assisted Extractions from Wheat Straw. Carbohydrate Polymers, 50, 263-271. https://doi.org/10.1016/S0144-8617(02)00037-1
|
[29]
|
Hsu, T.C., Guo, G.L., Chen, W.H. and Hwang, W.S. (2010) Effect of Dilute Acid Pretreatment of Rice Straw on Structural Properties and Enzymatic Hydrolysis. Bioresource Technology, 101, 4907-4913.
https://doi.org/10.1016/j.biortech.2009.10.009
|
[30]
|
Hou, X.-D., Li, N. and Z, M.-H. (2013) Facile and Simple Pretreatment of Sugar Cane Bagasse without Size Reduction Using Renewable Ionic Liquids-Water Mixtures. ACS Sustainable Chemistry and Engineering, 1, 519-526.
https://doi.org/10.1021/sc300172v
|
[31]
|
Boeriu, C.G., Bravo, D., Gosselink, R.J. and van Dam, J.E. (2004) Characterisation of Structure-Dependent Functional Properties of Lignin with Infrared Spectroscopy. Industrial Crops and Products, 20, 205-218.
https://doi.org/10.1016/j.indcrop.2004.04.022
|
[32]
|
Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H.V., Auer, M., Vogel, K.P., Simmons, B.A. and Singh, S. (2010) Comparison of Dilute Acid and Ionic Liquid Pretreatment of Switchgrass: Biomass Recalcitrance, Delignification and Enzymatic Saccharification. Bioresource Technology, 101, 4900-4906.
https://doi.org/10.1016/j.biortech.2009.10.066
|
[33]
|
Yang, S., Zhang, Y., Yue, W., Wang, W., Wang, Y.Y., Yuan, T.Q. and Sun, R.C. (2016) Valorization of Lignin and Cellulose in Acid-Steam-Exploded Corn Stover by a Moderate Alkaline Ethanol Post-Treatment Based on an Integrated Biorefinery Concept. Biotechnology for Biofuels, 9, 238.
https://doi.org/10.1186/s13068-016-0656-1
|
[34]
|
Corrales, R.C.N.R., Mendes, F.M.T., Perrone, C.C., Sant’Anna, C., de Souza, W., Abud, Y., da Silva Bon, E.P. and Ferreira-Leitão, V. (2012) Structural Evaluation of Sugar Cane Bagasse Steam Pretreated in the Presence of CO2 and SO2. Biotechnology for Biofuels, 5, 36. https://doi.org/10.1186/1754-6834-5-36
|
[35]
|
Raveendran, K., Ganesh, A. and Khilar, K.C. (1996) Pyrolysis Characteristics of Biomass and Biomass Components. Fuel, 75, 987-998.
https://doi.org/10.1016/0016-2361(96)00030-0
|
[36]
|
Sun, F.F., Zhao, X., Hong, J., Tang, Y., Wang, L., Sun, H., Li, X. and Hu, J. (2016) Industrially Relevant Hydrolyzability and Fermentability of Sugarcane Bagasse Improved Effectively by Glycerol Organosolv Pretreatment. Biotechnology for Biofuels, 9, 59. https://doi.org/10.1186/s13068-016-0472-7
|
[37]
|
Sun, F.F., Wang, L., Hong, J., Ren, J., Du, F., Hu, J., Zhang, Z. and Zhou, B. (2015) The Impact of Glycerol Organosolv Pretreatment on the Chemistry and Enzymatic Hydrolyzability of Wheat Straw. Bioresource Technology, 187, 354-361.
https://doi.org/10.1016/j.biortech.2015.03.051
|
[38]
|
King, A.W.T., Parviainen, A., Karhunen, P., Matikainen, J., Hauru, L.K.J., Sixtab, H. and Kilpelainen, I. (2012) Relative and Inherent Reactivities of Imidazolium-Based Ionic Liquids: The Implications for Lignocellulose Processing Applications. RSC Advances, 2, 8020-8026. https://doi.org/10.1039/c2ra21287k
|
[39]
|
Zhang, J., Feng, L., Wang, D., Zhang, R., Liu, G. and Cheng, G. (2014) Thermogravimetric Analysis of Lignocellulosic Biomass with Ionic Liquid Pretreatment. Bioresource Technology, 153, 379-382. https://doi.org/10.1016/j.biortech.2013.12.004
|
[40]
|
Singh, S., Cheng, G., Sathitsuksanoh, N., Wu, D., Varanasi, P., George, A., Balan, V., Gao, X., Kumar, R., Dale, B.E., Wyman, C.E. and Simmons, B.A. (2015) Comparison of Different Biomass Pretreatment Techniques and Their Impact on Chemistry and Structure. Frontiers in Energy Research, 2, 62.
https://doi.org/10.3389/fenrg.2014.00062
|
[41]
|
Yang, H., Yan, R., Chen, H., Lee, D.H. and Zheng, C.G. (2007) Characteristics of Hemicellulose, Cellulose, and Lignin Pyrolysis. Fuel, 86, 1781-1788.
https://doi.org/10.1016/j.fuel.2006.12.013
|
[42]
|
Fang, W., Weisheng, N., Andong, Z. and Weiming, Y. (2015) Enhanced Anaerobic Digestion of Corn Stover by Thermo-Chemical Pretreatment. International Journal of Agricultural & Biological Engineering, 8, 84-90.
|
[43]
|
Elgharbawy, A.A., Alam, M.Z., Kabbashi, N.A., Moniruzzaman, M. and Jamal, P. (2016) Evaluation of Several Ionic Liquids for in Situ Hydrolysis of Empty Fruit Bunches by Locally-Produced Cellulose. 3 Biotech, 6, 128.
|
[44]
|
Chundawat, S.P.S., Donohoe, B.S., Sousa, L.D., Elder, T., Agarwal, U.P., Lu, F.C., Ralph, J., Himmel, M.E., Balan, V. and Dale, B.E. (2011) Multi-Scale Visualization and Characterization of Lignocellulosic Plant Cell Wall Deconstruction during Thermochemical Pretreatment. Energy and Environmental Science, 4, 973-984.
https://doi.org/10.1039/c0ee00574f
|
[45]
|
Zhang, Y.P., Ding, S., Mielenz, J.R., Cui, J., Elander, R.T., Laser, M., Himmel, M.E., McMillan, J.R. and Lynd, L.R. (2007) Fractionating Recalcitrant Lignocellulose at Modest Reaction Conditions. Biotechnology and Bioengineering, 97, 214-223.
https://doi.org/10.1002/bit.21386
|
[46]
|
Vidal, B.C., Dien, B.S., Ting, K. and Singh, V. (2011) Influence of Feedstock Particle Size on Lignocelluloses Conversion: A Review. Applied Biochemistry and Biotechnology, 164, 1405-1421. https://doi.org/10.1007/s12010-011-9221-3
|
[47]
|
Kadić, A., Palmqvist, B. and Lidén, G. (2014) Effects of Agitation on Particle-Size Distribution and Enzymatic Hydrolysis of Pretreated Spruce and Giant Reed. Biotechnology for Biofuels 7, 77. https://doi.org/10.1186/1754-6834-7-77
|
[48]
|
Peciulyte, A., Karlstrom, K., Larsson, P.T. and Olsson, L. (2015) Impact of the Supramolecular Structure of Cellulose on the Efficiency of Enzymatic Hydrolysis. Biotechnology for Biofuels, 8, 56.
|
[49]
|
Adani, F., Papa, G., Schievano, A., Cardinale, G., D’Imporzano, G. and Tambone, F. (2011) Nanoscale Structure of the Cell Wall Protecting Cellulose from Enzyme Attack. Environmental Science and Technology, 45, 1107-1113.
https://doi.org/10.1021/es1020263
|
[50]
|
Shill, K., Padmanabhan, S., Xin, Q., Prausnitz, J.M., Clark, D.S. and Blanch, H.W. (2011) Ionic Liquid Pretreatment of Cellulosic Biomass: Enzymatic Hydrolysis and Ionic Liquid Recycle. Biotechnology and Bioengineering, 108, 511-520.
https://doi.org/10.1002/bit.23014
|
[51]
|
Zhang, Y., He, H., Dong, K., Fanc, M. and Zhang, S. (2017) DFT Study on Lignin Dissolution in Imidazolium Based Ionic Liquids. RSC Advances, 7, 12670-12681.
https://doi.org/10.1039/C6RA27059J
|
[52]
|
Nguyen, T.A.D., Kim, K.R., Han, S.J., Cho, H.Y., Kim, J.W., Park, S.M., Park, J.C. and Sim, S.J. (2010) Pretreatment of Rice Straw with Ammonia and Ionic Liquid for Lignocelluloses Conversion to Fermentable Sugars. Bioresource Technology, 101, 7432-7438. https://doi.org/10.1016/j.biortech.2010.04.053
|
[53]
|
Geng, X. and Henderson, W.A. (2012) Pretreatment of Corn Stover by Combining Ionic Liquid Dissolution with Alkali Extraction. Biotechnology and Bioengineering, 109, 84-91. https://doi.org/10.1002/bit.23281
|
[54]
|
Rezende, C.A., de Lima, M.A., Maziero, P., deAzevedo, E.R., Garcia, W. and Polikarpov, I. (2011) Chemical and Morphological Characterization of Sugarcane Bagasse Submitted to a Delignification Process for Enhanced Enzymatic Digestibility. Biotechnology for Biofuels, 4, 54. https://doi.org/10.1186/1754-6834-4-54
|
[55]
|
Karatzos, S.M., Edye, L.A. and Doherty, W.O.S. (2012) Sugarcane Bagasse Pretreatment using Three Imidazolium-Based Ionic Liquids; Mass Balances and Enzyme Kinetics. Biotechnology for Biofuels, 5, 62.
https://doi.org/10.1186/1754-6834-5-62
|