[1]
|
P. C. Hughes, “Spacecraft Attitude Dynamics,” Wiley, New York, 1986.
|
[2]
|
Z. Vafa and S. Dubbowsky, “The Kinematics and Dynamics of Space Manipulators: The Virtual Manipulator Approach,” International Journal of Robotics Research, Vol. 9, No. 4, 1990, pp. 3-21.
doi:10.1177/027836499000900401
|
[3]
|
S. Dubowsky and E. Papadopoulos, “The Kinematic, Dynamics, and Control of Free-Flying and Free-Flaoting Space Robotic Systems,” IEEE Transactions on Robotics and Automation, Vol. 9, No. 5, 1993, pp. 531-543.
doi:10.1109/70.258046
|
[4]
|
S. K. Saha, “A Unified Approach to Space Robot Kinematics,” IEEE Transactions on Robotics and Automation, Vol. 12, No. 3, 1996, pp. 401-405.
|
[5]
|
Y. Umetani and K. Yoshida, “Resolved Motion Rate Control of Space Manipulators with Generalized Jacobian Matrix,” IEEE Transactions on Robotics and Automation, Vol. 5, No. 3, 1989, pp. 303-314.
|
[6]
|
X.-S. Ge, H. Li and Q.-Z. Zhang, “Nonholonomic Motion Planning of Space Robotics Based on the Genetic Algorithm with Wavelet Approximation,” IEEE International Conference on Control and Automation, Guangzhou, 30 May-1 June 2007, pp. 1977-1980.
|
[7]
|
D. R. Isenberg, “Dynamics and Simulation of a Space Robot in a Gravitational Field,” IEEE Southeastcon, Huntsville, 3-6 April 2008, pp. 268-273.
|
[8]
|
Y. Nakamura and R. Mukherjee, “Nonholonmic Path Planning of Space Robots via Bi-Directional Approach,” IEEE Transactions on Robotics and Automation, Vol. 7, No. 4, 1991, pp. 500-514.
|
[9]
|
T. Yoshikawa, “Dynamics Hybrid Position/Force Control of Robot Manipulators-Description of Hand Constraints and Calculation of Joint Driving Force,” IEEE Journal of Robotics and Automation, Vol. 3, No. 5, 1987, pp. 386-392.
doi:10.1109/JRA.1987.1087120
|
[10]
|
Y. Xu and T. Kanade, “Space Robotics: Dynamics and Control,” Kluwer Academic Publisher, Boston, 1993.
|
[11]
|
A. De Luca and G. Oriolo, “Modeling and Control of Nonholonomic Mechanical Systems,” In: J. Angeles and A. Kecskemethy, Eds., Kinematics and Dynamics of Multi-Body Systems, CISM Courses and Lectures, Vol. 360, Springer-Verlag, Wien, 1995, pp. 277-342.
|
[12]
|
Ju I. Neimark annd N. A. Fufaef, “Dynamics of Nonholonomic Systems,” Vol. 33, Translations of Mathematical Monographs, American Mathematical Society, Providence, 1972.
|
[13]
|
A. M. Lopsec, “Nichthholomome Systeme in Mehrdimensionalen Euklidischen Raumen,” Trudy Seminara po Vektornomu i Tenzornomu Analizu, Vol. 4, 1937, pp. 302-317. A. M Bloch, M. Reyhanoglu and N. H. McClamroch, “Control and Stabilization of Nonholonomic Dynamic Systems,” IEEE Transactions on Automatic Control, Vol. 37, No. 11, 1992, pp. 1746-1757. doi:10.1109/9.173144
|
[14]
|
J. G. Wang, R. Mukherji, M. Ficocelli, A. Ogilvie, M. Liu and C. Rice, “Modeling and Simulation of Robotic System for Servicing Hubble Space Telescope,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, October 2006, pp. 1026-1031.
|
[15]
|
F. Matsuno and K. Saito, “Attitude Control of a Space Robot with Initial Angular Momentum,” IEEE International Conference on Robotics and Automation (ICRA), Vol. 2, 2001, pp. 1400-1440.
|
[16]
|
H. T. Shui, J. W. Wang and H. X. Ma, “Optimal Motion Planning for Free-Floating Space Robots Based on Null Space Approach,” International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, 11-12 April 2009, pp. 845-848.
|
[17]
|
C. Lanczos, “The Variational Principle of Mechanics,” University of Toronto Press, Toronto, 1966.
|
[18]
|
R. Murray and S. Sastry, “Nonholonomic Motion Planning: Steering Using Sinusoids,” IEEE Transactions on Automatic Control, Vol. 38, No. 5, 1993, pp. 700-716.
|
[19]
|
M. Shibli, “Unified Modeling Approach of Kinematics, Dynamics, and Control of a Free-Flying Space Robot Interacting with a Target Satellite,” Journal of Intelligent Control and Automation, Vol. 2, No. 1, 2011, pp. 8-23.
|
[20]
|
M. Shibli, “Modeling and Control of a Free-Flying Space Robot Interacting with a Target Satellite,” PhD Thesis, Montreal, 2009.
|
[21]
|
M. Shibli, F. Aghili and C.-Y. Su, “Modeling of a Free-Flying Space Robot in Contact with a Target Satellite,” IEEE Conference on Control Applications, Toronto, 28-31 August 2005, pp. 559-564.
|
[22]
|
A. Ben-Israel and N. E. T Greville, “Generalized Inverses: Theory and Application,” 2nd Edition, Springer, New York, 2003.
|
[23]
|
M. Shibli, C.-Y. Su and F. Aghili, “Online Nonholonomy Criterion of a Free-Flying Space Robot with/without Interaction with a Target Satellite,” 36th International Symposium on Robotics, IEEE Robotics and Automation, Tokyo, 28 November-1 December, 2005.
|