[1]
|
Huo, S.-P., Nie, M.-C., Kong, Z.-W., Wu, G.-M. and Chen, J. (2012) Crosslinking Kinetics of the Formation of Lignin-Aminated Polyol-Based Polyurethane Foam. Journal of Applied Polymer Science, 125, 152-157.
https://doi.org/10.1002/app.35401
|
[2]
|
Daniel, K. and Vahid, S. (1991) Handbook of Polymeric Foams and Foam Technology. Oxford University Press, New York.
|
[3]
|
Neff, R.A. and Macosko, C.W. (1996) Simultaneous Measurement of Viscoelastic Changes and Cell Opening during Processing of Flexible Polyurethane Foam. Rheologica Acta, 35, 656-666. https://doi.org/10.1007/BF00396514
|
[4]
|
Yasunaga, K., Neff, R.A. and Zhang, X.D. (1996) Study of Cell Opening in Flexible Polyurethane Foam. Journal of Cellular Plastics, 32, 427-448.
https://doi.org/10.1177/0021955X9603200502
|
[5]
|
Gandini, A. and Belgacem, N.M. (1998) Recent Advances in the Elaboration of Polymeric Materials Derived from Biomass Components. Polymer International, 47, 267-276. https://doi.org/10.1002/(SICI)1097-0126(199811)47:3<267::AID-PI9>3.0.CO;2-X
|
[6]
|
Gandin, A., Belgacem, N.M., Guo, Z.X. and Montanari, S. (2002) Lignins as Macromonomers for Polyesters and Polyurethanes. In: Hu, T.Q., Ed., Chemical Modification, Properties, and Usage of Lignin, Academic/Plenum, New York, 57-80.
https://doi.org/10.1007/978-1-4615-0643-0_4
|
[7]
|
Hatakeyama, H. (2002) Polyurethane Containing Lingin. In: Hu, T.Q., Ed., Chemical Modification, Properties and Usage of Lignin, Academic/Plenum, New York, 41-56. https://doi.org/10.1007/978-1-4615-0643-0_3
|
[8]
|
Hatakeyama, H. and Hatakeyama, T. (2010) Lignin Structure, Properties and Applications. In: Abe, A., Dusek, K. and Kobayashi, S., Eds., Biopolymers, Vol. 232. Advances in Polymer Science, Springer, New York, 1-63.
|
[9]
|
Sarkanen, K.V. and Ludwig, C.H. (1971) Lignins, Occurrence, Formation, Structure and Reactions. Wiley-Interscience, New York.
|
[10]
|
Lin, S.Y. and Dence, C.W., Eds. (1992) Methods in Lignin Chemistry. Springer Series in Wood Science. Springer, Berlin, Heidelberg, 527-548.
https://doi.org/10.1007/978-3-642-74065-7
|
[11]
|
Hu, T.Q. (2008) Characterization of Lignocellulosic Materials. Blackwell, Oxford.
https://doi.org/10.1002/9781444305425
|
[12]
|
Hatakeyama, H., et al. (2013) Glass Transition Temperature of Polyurethane Foams Derived from Lignin by Controlled Reaction Rate. Journal of Thermal Analysis and Calorimetry, 114, 1075-1082. https://doi.org/10.1007/s10973-013-3132-1
|
[13]
|
Hatakeyama, H., Tsujimoto, Y., Ja. Zarubin, M., Krutov, S.M. and Hatakeyama, T. (2010) Thermal Decomposition and Glass Transition of Industrial Hydrolysis Lignin. Journal of Thermal Analysis and Calorimetry, 101, 289-295.
https://doi.org/10.1007/s10973-010-0698-8
|
[14]
|
Cateto, C.A.B. (2008) Lignin-Based Polyurethanes, Characterisation, Synthesis and Applications. Dissertation, Universidade do Porto (FEUP), Porto.
|
[15]
|
Gadhave, R.V., Mahanwar, A. and Gadekar, T. (2017) Bio-Renewable Sources for Synthesis of Ecofriendly Polyurethane Adhesives—Review. Open Journal of Polymer Chemistry, 7, 57-75. https://doi.org/10.4236/ojpchem.2017.74005
|
[16]
|
Sarkanen, K.V. and Ludwig, C.H. (1971) Lignins, Occurrence, Formation, Structure and Reactions. John Wiley & Sons, Inc., New York.
|
[17]
|
Wang, H., Ni, Y., Jahan, M.S., Liu, Z. and Schafer, T. (2011) Stability of Cross-Linked Acetic Acid Lignin-Containing Polyurethane. Journal of Thermal Analysis and Calorimetry, 103, 293-302. https://doi.org/10.1007/s10973-010-1052-x
|
[18]
|
Duval, A. and Lawoko, M. (2014) A Review on Lignin-Based Polymeric, Micro- and Nano-Structured Materials. Reactive and Functional Polymers, 85, 78-96.
https://doi.org/10.1016/j.reactfunctpolym.2014.09.017
|
[19]
|
Kandula, M., Schwenke, T., Friebel, S. and Salthammer, T. (2015) Effect of Ball Milling on Lignin Polyesterification with ε-Caprolactone. Holzforschung, 69, 297-302.
https://doi.org/10.1515/hf-2014-0053
|
[20]
|
Braun, J.L., Holtman, K.M. and Kadla, J.F. (2005) Lignin-Based Carbon Fibers, Oxidative Thermostabilization of Kraft Lignin. Carbon, 43, 385-394.
https://doi.org/10.1016/j.carbon.2004.09.027
|
[21]
|
Norberg, I., Nordström, Y., Drougge, R., Gellerstedt, G. and Sjöholm, E. (2013) A New Method for Stabilizing Softwood Kraft Lignin Fibers for Carbon Fiber Production. Journal of Applied Polymer Science, 128, 3824-3830.
https://doi.org/10.1002/app.38588
|
[22]
|
Lora, J. (2008) Industrial Commercial Lignins: Sources, Properties and Applications. In: Belgacem, M.N. and Gandini, A., Eds., Monomers, Polymers and Composites from Renewable Resources, Elsevier, Amsterdam, Chapter 10, 225-241.
|
[23]
|
Gordobil, O., Delucis, R., Egüés, I. and Labidi, J. (2015) Kraft Lignin as Filler in PLA to Improve Ductility and Thermal Properties. Industrial Crops and Products, 72, 46-53. https://doi.org/10.1016/j.indcrop.2015.01.055
|
[24]
|
Schorr, D., Diouf, P.N. and Stevanovic, T. (2014) Evaluation of Industrial Lignins for Biocomposites Production. Industrial Crops and Products, 52, 65-73.
https://doi.org/10.1016/j.indcrop.2013.10.014
|
[25]
|
Spiridon, I., Leluk, K., Resmerita, A.M. and Darie, R.N. (2015) Evaluation of PLA-Lignin Bioplastics Properties before and after Accelerated Weathering. Composites Part B: Engineering, 69, 342-349.
https://doi.org/10.1016/j.compositesb.2014.10.006
|
[26]
|
Yang, L., Wang, X., Cui, Y., et al. (2014) Modification of Renewable Resources—Lignin—By Three Chemical Methods and Its Applications to Polyurethane Foams. Polymers for Advanced Technologies, 25, 1089-1098.
https://doi.org/10.1002/pat.3356
|
[27]
|
Calvo-Correas, T., Gabilondo, N., Alonso-Varona, A., Palomares, T., Corcuera, M.A. and Eceiza, A. (2016) Shape-Memory Properties of Crosslinked Biobased Polyurethanes. European Polymer Journal, 78, 253-263.
https://doi.org/10.1016/j.eurpolymj.2016.03.030
|
[28]
|
Luo, X., Mohanty, A. and Misra, M. (2013) Lignin as a Reactive Reinforcing Filler for Water-Blown Rigid Biofoam Composites from Soy Oil-Based Polyurethane. Industrial Crops and Products, 47, 13-19.
https://doi.org/10.1016/j.indcrop.2013.01.040
|
[29]
|
Cheradame, H., Detoisien, M., Gandini, A., Pla, F. and Roux, G. (1989) Polyurethane from Kraft Lignin. Polymer International, 21, 269-275.
https://doi.org/10.1002/pi.4980210314
|
[30]
|
García, A., Erdocia, X., González, M.A. and Labidi, J. (2012) Effect of Ultrasound Treatment on the Physicochemical Properties of Alkaline Lignin. Chemical Engineering and Processing: Process Intensification, 62, 150-158.
https://doi.org/10.1016/j.cep.2012.07.011
|
[31]
|
Hatakeyama, H., Kosugi, R. and Hatakeyama, T. (2008) Thermal Properties of Lignin- and Molassesbased Polyurethane Foams. Journal of Thermal Analysis and Calorimetry, 92, 419-424. https://doi.org/10.1007/s10973-007-8963-1
|
[32]
|
De Oliveira, F.D., Ramires, E.C., Frollini, E. and Belgacem, M.N. (2015) Lignopolyurethanic Materials Based on Oxypropylated Sodium Lignosulfonate and Castor Oil Blends. Industrial Crops and Products, 72, 77-86.
https://doi.org/10.1016/j.indcrop.2015.01.023
|
[33]
|
Cinelli, P., Anguillesi, I. and Lazzeri, A. (2013) Green Synthesis of Flexible Polyurethane Foams from Liquefied Lignin. European Polymer Journal, 49, 1174-1184.
https://doi.org/10.1016/j.eurpolymj.2013.04.005
|
[34]
|
Yeganeh, H. and Mehdizadeh, M.R. (2004) Synthesis and Properties of Isocyanate Curable Millable Polyurethane Elastomers Based on Castor Oil as a Renewable Resource Polyol. European Polymer Journal, 40, 1233-1238.
https://doi.org/10.1016/j.eurpolymj.2003.12.013
|
[35]
|
Nada, A.-A.M.A., Yousef, M.A., Shaffei, K.A. and Salah, A.M. (1998) Infrared Spectroscopy of Some Treated Lignins. Polymer Degradation and Stability, 62, 157-163.
https://doi.org/10.1016/S0141-3910(97)00273-5
|
[36]
|
Zhang, C., Wu, H. and Kessler, M.R. (2015) High Bio-Content Poly Urethane Composites with Urethane Modified Lignin as Filler. Polymer, 69, 52-57.
https://doi.org/10.1016/j.polymer.2015.05.046
|
[37]
|
Mohamed, H.A., Badran, B.M., Rabie, A.M. and Morsi, S.M.M. (2014) Synthesis and Characterization of Aqueous (Poly Urethane/Aromatic Polyamide Sulfone) Copolymer Dispersions from Castor Oil. Progress in Organic Coatings, 77, 965-974.
https://doi.org/10.1016/j.porgcoat.2014.01.026
|
[38]
|
Amaral, J.S., Sepulveda, M., Cateto, C.A., Farnandes, I.P., Rodrigues, A.E., Belgacem, M.N. and Barreiro, M.F. (2012) Fungal Degradation of Lignin-Based Rigid Polyurethane Foams. Polymer Degradation and Stability, 97, 2069-2076.
https://doi.org/10.1016/j.polymdegradstab.2012.03.037
|
[39]
|
Ignat, L., Ignat, M., Ciobanu, C., Doroftei, F. and Popa, V.I. (2011) Effects of Flax Lignin Addition on Enzymatic Oxidation of Poly(Ethylene Adipate) Urethanes. Industrial Crops and Products, 34, 1017e28.
|
[40]
|
Zhu, H.B., Peng, Z.M., Chen, Y.M., Li, G.Y., Wang, L., Tang, Y., Pang, R., Ul Haq Khan, Z. and Wan, P.Y. (2014) Preparation and Characterization of Flame Retardant Polyurethane Foams Containing Phosphorus-Nitrogen-Functionalized Lignin. RSC Advances, 4, 55271-55279. https://doi.org/10.1039/C4RA08429B
|
[41]
|
Tay, G.S., Ong, L.N. and Rozman, H.D. (2012) Mechanical Properties and Fire Retardant Behavior of Polyurethane Foam Reinforced with Oil Palm Empty Fruit Bunch. Journal of Applied Polymer Science, 125, 158-164.
https://doi.org/10.1002/app.35568
|
[42]
|
Draye, A.C. and Tondeur, J.J. (1999) Temperature Effect on Alcohol-Isocyanate Kinetics. Reaction Kinetics and Catalysis Letters, 66, 319-324.
https://doi.org/10.1007/BF02475807
|
[43]
|
Thirumal, M., Khastgir, D., Singha, N.K., Manjunath, B.S. and Naik, Y.P. (2008) Effect of Foam Density on the Properties of Water Blown Rigid Polyurethane Foam. Journal of Applied Polymer Science, 108, 1810-1817.
|
[44]
|
Amaral, J.S., Sepúlveda, M. and Cateto, C.A. (2012) Fungal Degradation of Lignin-Based Rigid Polyurethane Foams. Polymer Degradation and Stability, 97, 2069-2076. https://doi.org/10.1016/j.polymdegradstab.2012.03.037
|
[45]
|
Huo, S.P., Nie, M.C. and Kong, Z.W. (2012) Crosslinking Kinetics of the Formation of Lignin-Aminated Polyol-Based Polyurethane Foam. Journal of Applied Polymer Science, 125, 152-157. https://doi.org/10.1002/app.35401
|
[46]
|
Landrock, A.H. (1995) Handbook of Plastic Foams: Types, Properties, Manufacture, and Applications. Noyes Publications, Park Ridge, NJ.
|
[47]
|
Hirschler, M.M. (2008) Polyurethane Foam and Fire Safety. Polymers for Advanced Technologies, 19, 521-529. https://doi.org/10.1002/pat.1092
|
[48]
|
Xu, Z.B., Kong, W.W., Zhou, M.X. and Peng, M. (2010) Effect of Surface Modification of Montmorillonite on the Properties of Rigid Polyurethane Foam Composites. Chinese Journal of Polymer Science, 28, 615-624.
https://doi.org/10.1007/s10118-010-9111-0
|
[49]
|
Stewart, D. (2008) Lignin as a Base Material for Materials Applications, Chemistry, Application and Economics. Industrial Crops and Products, 27, 202-207.
https://doi.org/10.1016/j.indcrop.2007.07.008
|
[50]
|
Doherty, W., Halley, P., Edye, L., Rogers, D., Cardona, F., Park, Y. and Woo, T. (2007) Studies on Polymers and Composites from Lignin and Fiber Derived from Sugar Cane. Polymers for Advanced Technologies, 18, 673-678.
https://doi.org/10.1002/pat.879
|
[51]
|
Yoshida, H., Morck, R., Kringstad, K.P. and Hatakeyama, H. (1987) Kraft Lignin in Polyurethanes I. Mechanical Properties of Polyurethanes from a Kraft Lignin-Polyether Triol-Polymeric MDI System. Journal of Applied Polymer Science, 34, 1187-1198. https://doi.org/10.1002/app.1987.070340326
|
[52]
|
Liu, Z.M., Yu, F., Fang, G.Z. and Yang, H.J. (2009) Performance Characterization of Rigid Polyurethane Foam with Refined Alkali Lignin and Modified Alkali Lignin. Journal of Forestry Research, 20, 161-164.
https://doi.org/10.1007/s11676-009-0028-9
|
[53]
|
Tavares, L.B., Boas, C.V., Schleder, G.R., Nacas, A.M., Rosa, D.S. and Santos, D.J. (2016) Bio-Based Polyurethane Prepared from Kraft Lignin and Modified Castor Oil. eXPRESS Polymer Letters, 10, 927-940.
https://doi.org/10.3144/expresspolymlett.2016.86
|
[54]
|
Daemi, H., Barikani, M. and Barmar, M. (2013) Highly Stretchable Nanoalginate Based Polyurethane Elastomers. Carbohydrate Polymers, 95, 630.
|
[55]
|
Zhang, Q., Zhang, G., Xu, J., et al. (2015) Recent Advances on Ligin-Derived Polyurethane Polymers. Reviews on Advanced Materials Science, 40, 146-154.
|