[1]
|
Davidoff, A.M. (2012) Neuroblastoma. Seminars in Pediatric Surgery, 21, 2-14. https://doi.org/10.1053/j.sempedsurg.2011.10.009
|
[2]
|
Morandi, F., Corrias, M.V. and Pistoia, V. (2015) Evaluation of Bone Marrow as a Metastatic Site of Human Neuroblastoma. Annals of the New York Academy of Sciences, 1335, 23-31. https://doi.org/10.1111/nyas.12554
|
[3]
|
Hasan, M.K., Nafady, A., Takatori, A., Kishida, S., Ohira, M., Suenaga, Y., et al. (2013) ALK is a MYCN Target Gene and Regulates Cell Migration and Invasion in Neuroblastoma. Scientific Reports, 3, 3450. https://doi.org/10.1038/srep03450
|
[4]
|
Domingo-Fernandez, R., Watters, K., Piskareva, O., Stallings, R.L. and Bray, I. (2013) The Role of Genetic and Epigenetic Alterations in Neuroblastoma Disease Pathogenesis. Pediatric Surgery International, 29, 101-119. https://doi.org/10.1007/s00383-012-3239-7
|
[5]
|
Chaturvedi, N.K., McGuire, T.R., Coulter, D.W., Shukla, A., McIntyre, E.M., Sharp, J.G., et al. (2016) Improved Therapy for Neuroblastoma Using a Combination Approach: Superior Efficacy with Vismodegib and Topotecan. Oncotarget, 7, 15215-15229. https://doi.org/10.18632/oncotarget.7714
|
[6]
|
Brodeur, G.M., Seeger, R.C. and Schwab, M., Varmus, H.E., Bishop, J.M. (1984) Amplification of N-myc in Untreated Human Neuroblastomas Correlates with Advanced Disease Stage. Science, 224, 1121-1124. https://doi.org/10.1126/science.6719137
|
[7]
|
Seeger, R.C., Brodeur, G.M., Sather, H., Dalton, A., Siegel, S.E., Wong, K.Y., et al. (1985) Association of Multiple Copies of the N-myc Oncogene with Rapid Progression of Neuroblastomas. The New England Journal of Medicine, 313, 1111-1116. https://doi.org/10.1056/NEJM198510313131802
|
[8]
|
Kohl, N.E., Gee, C.E. and Alt, F.W. (1984) Activated Expression of the N-myc Gene in Human Neuroblastomas and Related Tumors. Science, 226, 1335-1337. https://doi.org/10.1126/science.6505694
|
[9]
|
Riley, R.D., Heney, D., Jones, D.R., Sutton, A.J., Lambert, P.C., Abrams, K.R., et al. (2004) A Systematic Review of Molecular and Biological Tumor Markers in Neuroblastoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 10, 4-12.
|
[10]
|
Huang, M. and Weiss, W.A. (2013) Neuroblastoma and MYCN. Cold Spring Harbor Perspectives in Medicine, 3, a014415. https://doi.org/10.1101/cshperspect.a014415
|
[11]
|
Storlazzi, C.T., Lonoce, A., Guastadisegni, M.C., Trombetta, D., D’Addabbo, P., Daniele, G., et al. (2010) Gene Amplification as Double Minutes or Homogeneously Staining Regions in Solid Tumors: Origin and Structure. Genome Research, 20, 1198-1206. https://doi.org/10.1101/gr.106252.110
|
[12]
|
Lutz, W., Stohr, M., Schurmann, J., Wenzel, A., Lohr, A. and Schwab, M. (1996) Conditional Expression of N-Myc in Human Neuroblastoma Cells Increases Expression of Alpha-Prothymosin and Ornithine Decarboxylase and Accelerates Progression into S-Phase Early after Mitogenic Stimulation of Quiescent Cells. Oncogene, 13, 803-812.
|
[13]
|
Bernards, R., Dessain, S.K. and Weinberg, R.A. (1986) N-myc Amplification Causes Down-Modulation of MHC Class I Antigen Expression in Neuroblastoma. Cell, 47, 667-674. https://doi.org/10.1016/0092-8674(86)90509-X
|
[14]
|
Goodman, L.A., Liu, B.C., Thiele, C.J., Schmidt, M.L., Cohn, S.L., Yamashiro, J.M., et al. (1997) Modulation of N-Myc Expression Alters the Invasiveness of Neuroblastoma. Clinical & Experimental Metastasis, 15, 130-139. https://doi.org/10.1023/A:1018448710006
|
[15]
|
Tanaka, N. and Fukuzawa, M. (2008) MYCN Downregulates Integrin Alpha1 to Promote Invasion of Human Neuroblastoma Cells. International Journal of Oncology, 33, 815-821.
|
[16]
|
Weiss, W.A., Aldape, K., Mohapatra, G., Feuerstein, B.G. and Bishop, J.M. (1997) Targeted Expression of MYCN Causes Neuroblastoma in Transgenic Mice. The EMBO Journal, 16, 2985-2995. https://doi.org/10.1093/emboj/16.11.2985
|
[17]
|
Charron, J., Malynn, B.A., Fisher, P., Stewart, V., Jeannotte, L., Goff, S.P., et al. (1992) Embryonic Lethality in Mice Homozygous for a Targeted Disruption of the N-Myc Gene. Genes & Development, 6, 2248-2257. https://doi.org/10.1101/gad.6.12a.2248
|
[18]
|
Stanton, B.R., Perkins, A.S., Tessarollo, L., Sassoon, D.A. and Parada, L.F. (1992) Loss of N-myc Function Results in Embryonic Lethality and Failure of the Epithelial Component of the Embryo to Develop. Genes & Development, 6, 2235-2247. https://doi.org/10.1101/gad.6.12a.2235
|
[19]
|
Sawai, S., Shimono, A., Wakamatsu, Y., Palmes, C., Hanaoka, K. and Kondoh, H. (1993) Defects of Embryonic Organogenesis Resulting from Targeted Disruption of the N-Myc Gene in the Mouse. Development, 117, 1445-1455.
|
[20]
|
Knoepfler, P.S., Cheng, P.F. and Eisenman, R.N. (2002) N-myc Is Essential during Neurogenesis for the Rapid Expansion of Progenitor Cell Populations and the Inhibition of Neuronal Differentiation. Genes & Development, 16, 2699-2712. https://doi.org/10.1101/gad.1021202
|
[21]
|
Brodeur, G.M. and Bagatell, R. (2014) Mechanisms of Neuroblastoma Regression. Nature Reviews Clinical Oncology, 11, 704-713. https://doi.org/10.1038/nrclinonc.2014.168
|
[22]
|
DuBois, S.G., Kalika, Y., Lukens, J.N., Brodeur, G.M., Seeger, R.C., Atkinson, J.B., et al. (1999) Metastatic Sites in Stage IV and IVS Neuroblastoma Correlate with Age, Tumor Biology, and Survival. Journal of Pediatric Hematology/Oncology, 21, 181-189. https://doi.org/10.1097/00043426-199905000-00005
|
[23]
|
Yue, Z.X., Huang, C., Gao, C., Xing, T.Y., Liu, S.G., Li, X.J., et al. (2017) MYCN Amplification Predicts Poor Prognosis Based on Interphase Fluorescence in Situ Hybridization Analysis of Bone Marrow Cells in Bone Marrow Metastases of Neuroblastoma. Cancer Cell International, 17.
|
[24]
|
Kenney, A.M., Widlund, H.R. and Rowitch, D.H. (2004) Hedgehog and PI-3 Kinase Signaling Converge on Nmyc1 to Promote Cell Cycle Progression in Cerebellar Neuronal Precursors. Development, 131, 217-228. https://doi.org/10.1242/dev.00891
|
[25]
|
Kang, J., Rychahou, P.G., Ishola, T.A., Mourot, J.M., Evers, B.M. and Chung, D.H. (2008) N-myc Is a Novel Regulator of PI3K-Mediated VEGF Expression in Neuroblastoma. Oncogene, 27, 3999-4007. https://doi.org/10.1038/onc.2008.15
|
[26]
|
Chesler, L., Schlieve, C., Goldenberg, D.D., Kenney, A., Kim, G., McMillan, A., et al. (2006) Inhibition of Phosphatidylinositol 3-Kinase Destabilizes Mycn Protein and Blocks Malignant Progression in Neuroblastoma. Cancer Research, 66, 8139-8146. https://doi.org/10.1158/0008-5472.CAN-05-2769
|
[27]
|
Johnsen, J.I., Segerstrom, L., Orrego, A., Elfman, L., Henriksson, M., Kagedal, B., et al. (2008) Inhibitors of Mammalian Target of Rapamycin Downregulate MYCN Protein Expression and Inhibit Neuroblastoma Growth in Vitro and in Vivo. Oncogene, 27, 2910-2922. https://doi.org/10.1038/sj.onc.1210938
|
[28]
|
Chanthery, Y.H., Gustafson, W.C., Itsara, M., Persson, A., Hackett, C.S., Grimmer, M., et al. (2012) Paracrine Signaling through MYCN Enhances Tumor-Vascular Interactions in Neuroblastoma. Science Translational Medicine, 4, 115ra113. https://doi.org/10.1126/scitranslmed.3002977
|
[29]
|
Herceg, Z. and Wang, Z.Q. (2001) Functions of poly(ADP-ribose) Polymerase (PARP) in DNA Repair, Genomic Integrity and Cell Death. Mutation Research, 477, 97-110. https://doi.org/10.1016/S0027-5107(01)00111-7
|
[30]
|
Jubin, T., Kadam, A., Jariwala, M., Bhatt, S., Sutariya, S., Gani, A.R., et al. (2016) The PARP Family: Insights into Functional Aspects of Poly (ADP-ribose) Polymerase-1 in Cell Growth and Survival. Cell Proliferation, 49, 421-437. https://doi.org/10.1111/cpr.12268
|
[31]
|
De la Lastra, C.A., Villegas, I. and Sanchez-Fidalgo, S. (2007) Poly(ADP-ribose) Polymerase Inhibitors: New Pharmacological Functions and Potential Clinical Implications. Current Pharmaceutical Design, 13, 933-962. https://doi.org/10.2174/138161207780414241
|
[32]
|
Colicchia, V., Petroni, M., Guarguaglini, G., Sardina, F., Sahun-Roncero, M., Carbonari, M., et al. (2017) PARP Inhibitors Enhance Replication Stress and Cause Mitotic Catastrophe in MYCN-Dependent Neuroblastoma. Oncogene. https://doi.org/10.1038/onc.2017.40
|
[33]
|
Vinay, D.S., Ryan, E.P., Pawelec, G., Talib, W.H., Stagg, J., Elkord, E., et al. (2015) Immune Evasion in Cancer: Mechanistic Basis and Therapeutic Strategies. Seminars in Cancer Biology, 35, S185-S198. https://doi.org/10.1016/j.semcancer.2015.03.004
|
[34]
|
Brahmer, J.R., Tykodi, S.S., Chow, L.Q., Hwu, W.J., Topalian, S.L., Hwu, P., et al. (2012) Safety and Activity of Anti-PD-L1 Antibody in Patients with Advanced Cancer. The New England Journal of Medicine, 366, 2455-2465. https://doi.org/10.1056/NEJMoa1200694
|
[35]
|
Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., et al. (2012) Safety, Activity, and Immune Correlates of anti-PD-1 Antibody in Cancer. The New England Journal of Medicine, 366, 2443-2454. https://doi.org/10.1056/NEJMoa1200690
|
[36]
|
Zhang, B. (2010) CD73: A Novel Target for Cancer Immunotherapy. Cancer Research, 70, 6407-6411. https://doi.org/10.1158/0008-5472.CAN-10-1544
|
[37]
|
Hoskin, D.W., Mader, J.S., Furlong, S.J., Conrad, D.M. and Blay, J. (2008) Inhibition of T Cell and Natural Killer Cell Function by Adenosine and Its Contribution to Immune Evasion by Tumor Cells (Review). International Journal of Oncology, 32, 527-535. https://doi.org/10.3892/ijo.32.3.527
|
[38]
|
Mosser, D.M. and Zhang, X. (2008) Interleukin-10: New Perspectives on an Old Cytokine. Immunological Reviews, 226, 205-218. https://doi.org/10.1111/j.1600-065X.2008.00706.x
|
[39]
|
Thomas, D.A. and Massague, J. (2005) TGF-Beta Directly Targets Cytotoxic T Cell Functions during Tumor Evasion of Immune Surveillance. Cancer Cell, 8, 369-380. https://doi.org/10.1016/j.ccr.2005.10.012
|
[40]
|
Dondero, A., Pastorino, F., Della Chiesa, M., Corrias, M.V., Morandi, F., Pistoia, V., et al. (2016) PD-L1 Expression in Metastatic Neuroblastoma as an Additional Mechanism for Limiting Immune Surveillance. Oncoimmunology, 5, e1064578. https://doi.org/10.1080/2162402X.2015.1064578
|
[41]
|
Ansell, S.M., Lesokhin, A.M., Borrello, I., Halwani, A., Scott, E.C., Gutierrez, M., et al. (2015) PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin’s Lymphoma. The New England Journal of Medicine, 372, 311-319. https://doi.org/10.1056/NEJMoa1411087
|
[42]
|
Kopp, L.M. and Katsanis, E. (2016) Targeted Immunotherapy for Pediatric Solid Tumors. Oncoimmunology, 5, e1087637.
|
[43]
|
Melaiu, O., Mina, M., Chierici, M., Boldrini, R., Jurman, G., Romania, P., et al. (2017) PD-L1 Is a Therapeutic Target of the Bromodomain Inhibitor JQ1 and, Combined with HLA Class I, a Promising Prognostic Biomarker in Neuroblastoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research.
|
[44]
|
Holowaty, M.N., Sheng, Y., Nguyen, T., Arrowsmith, C. and Frappier, L. (2003) Protein Interaction Domains of the Ubiquitin-Specific Protease, USP7/HAUSP. The Journal of Biological Chemistry, 278, 47753-47761. https://doi.org/10.1074/jbc.M307200200
|
[45]
|
Nicholson, B. and Suresh Kumar, K.G. (2011) The Multifaceted Roles of USP7: New Therapeutic Opportunities. Cell Biochemistry and Biophysics, 60, 61-68. https://doi.org/10.1007/s12013-011-9185-5
|
[46]
|
Van der Horst, A., de Vries-Smits, A.M., Brenkman, A.B., van Triest, M.H., van den Broek, N., Colland, F., et al. (2006) FOXO4 Transcriptional Activity Is Regulated by Monoubiquitination and USP7/HAUSP. Nature Cell Biology, 8, 1064-1073. https://doi.org/10.1038/ncb1469
|
[47]
|
Song, M.S., Salmena, L., Carracedo, A., Egia, A., Lo-Coco, F., Teruya-Feldstein, J., et al. (2008) The Deubiquitinylation and Localization of PTEN Are Regulated by a HAUSP-PML Network. Nature, 455, 813-817. https://doi.org/10.1038/nature07290
|
[48]
|
Du, Z., Song, J., Wang, Y., Zhao, Y., Guda, K., Yang, S., et al. (2010) DNMT1 Stability Is Regulated by Proteins Coordinating Deubiquitination and Acetylation-Driven Ubiquitination. Science Signaling, 3, ra80. https://doi.org/10.1126/scisignal.2001462
|
[49]
|
Faesen, A.C., Dirac, A.M., Shanmugham, A., Ovaa, H., Perrakis, A. and Sixma, T.K. (2011) Mechanism of USP7/HAUSP Activation by Its C-Terminal Ubiquitin-Like Domain and Allosteric Regulation by GMP-Synthetase. Molecular Cell, 44, 147-159. https://doi.org/10.1016/j.molcel.2011.06.034
|
[50]
|
Pfoh, R., Lacdao, I.K. and Saridakis, V. (2015) Deubiquitinases and the New Therapeutic Opportunities Offered to Cancer. Endocrine-Related Cancer, 22, T35-T54. https://doi.org/10.1530/ERC-14-0516
|
[51]
|
Tavana, O., Li, D., Dai, C., Lopez, G., Banerjee, D., Kon, N., et al. (2016) HAUSP Deubiquitinates and Stabilizes N-Myc in Neuroblastoma. Nature Medicine. https://doi.org/10.1038/nm.4180
|