Conversion of Carbon Dioxide to Methanol Using Solar Energy - A Brief Review
Ibram Ganesh
DOI: 10.4236/msa.2011.210190   PDF    HTML     10,833 Downloads   21,106 Views   Citations


This article presents a meticulous and comprehensive review of literature reported on conversion of carbon dioxide, a green house gas into methanol or to any other value added chemical following various routes including catalytic, thermal, biological, electrochemical and photoelectrochemical (PEC). More emphasis is given on conversion of carbon dioxide to methanol using solar energy (i.e., artificial photosynthesis) as this process can tackle the human generated two pressing problems, i.e., “global warming” and “energy crisis” today world is facing. It also covers information on various materials required for designing and development of reliable PEC cells for conversion of carbon dioxide to more value added chemicals including methanol. Finally, it also provides the scope for the future research on this topic with adequate literature support.

Share and Cite:

I. Ganesh, "Conversion of Carbon Dioxide to Methanol Using Solar Energy - A Brief Review," Materials Sciences and Applications, Vol. 2 No. 10, 2011, pp. 1407-1415. doi: 10.4236/msa.2011.210190.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. B. Robinson, N. E. Robinson and A. Soon, “Environmental Effects of Increased Atmospheric Carbon Dioxide,” Journal of American Physicians and Surgeons, Vol. 12, 2007, pp. 79-90.
[2] IPCC, “Summary for Policemakers,” Climate Change 2007: The Physical Science Basis., Contribution of Working Group I to the Fourth Assessment Report of the Intergovermental Panel on Climate Change, 4 May 2007. SPM. pdf/
[3] J. David and H. Herzog, “The Cost of Carbon Capture,” Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies, Cairns, 13-16 August 2000, pp. 985-990.
[4] M. Gupta, I. Coyle and K. Thambimuthu, “CO2 Capture Technologies and Opportunities in Canada,” Strawman Document for CO2 Capture and Storage (CC & S) Technology Roadmap, 1st Canadian CC & S Technology Roadmap Workshop, Calgary, September 2003, pp. 18-19.
[5] R. Priddle, “World Energy Outlook 2002,” 2nd Edition, International Energy Agency, IEA/OECD, Paris, 2002.
[6] UDI, “World Electric Power-Plants Database,” Utility Data Institute, McGraw-Hill, Washington DC, 2003.
[7] ENI, “World Oil and Gas Review 2004,” Rome, 2004.
[8] World Energy Council, “19th Survey of World Energy Resources,” World Energy Council, London, 2001.
[9] G. Moritis, “EOR Continues to Unlock Oil Resources,” Oil & Gas Journal, Vol. 12, 2004, pp. 53-65.
[10] M. Halmon, “Photoelectrochemical Reduction of Aqueous Carbon-Dioxide on p-Type Gallium-Phosphide in Liquid Junction Solar-Cells,” Nature, Vol. 275, 1978, pp. 115-116. doi:10.1038/275115a0
[11] A. Aruchamy, G. Aravamudan and G. V. Subba Rao, “Semiconductor Based Photoelectrochemical Cells for Solar Energy Conversion―An Overview,” Bulletin of Material Science, Vol. 4, No. 5, 1982, pp. 483-526. doi:10.1007/BF02824960
[12] L.R. Sheppard and J. Nowotny, “Materials for Photoelectrochemical Energy Conversion,” Advances in Applied Ceramics, Vol. 106, No. 1-2, 2007, pp. 9-20. doi:10.1179/174367607X152353
[13] S.W. Xu, Y. Lu, J. Li, Z.Y. Jiang and H. Wu, “Efficient Conversion of CO2 to Methanol Catalyzed by Three Dehydrogenases Co-Encapsulated in an Alginate-Silica (ALG-SiO2) Hybrid Gel,” Industrial & Engineering Che- mistry Research, Vol. 45, No. 13, 2006, pp. 4567-4573. doi:10.1021/ie051407l
[14] G. A. Olah, A. Geoppert and G. K. S. Prakash, “Chemical Recycling of Carbon Dioxide to Methanol and Dimethylether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons,” The Journal of Organic Chemistry, Vol. 74, No. 2, 2009, pp. 487-498. doi:10.1021/jo801260f
[15] M. Khoshtinat, N. A. S. Amin and I. Noshadi, “A Review of Methanol Production from Methane Oxidation via Non-Thermal Plasma Reactor,” World Academy of Science, Engineering and Technology, Vol. 62, 2010, pp. 354-358.
[16] E. Thimsen, F. L. Formal, M. Gratzel and S. C. Warren, “Influence of Plasmonic Au Nanoparticles on the photoactivity of Fe2O3 Electrodes for Water Splitting,” Nano Letters, Vol. 11, No. 1, 2011, pp. 35-43. doi:10.1021/nl1022354
[17] D. J. Darensbourg, “Chemistry of Carbon Dioxide Relevant to Its Utilization: A Personal Perspective,” Inorganic Chemistry, Vol. 49, No. 23, 2010, pp. 10765-10780. doi:10.1021/ic101800d
[18] E. B. Cole, P. S. Lakkaraju, D. M. Rampulla, A. J. Morris, E. Abelev and A. B. Bocarsly, “Using a One-Electron Shuttle for the Multielectron Reduction of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights,” Journal of the American Chemical Society, Vol. 132, No. 33, 2010, pp. 11539-11551. doi:10.1021/ja1023496
[19] P. M. Zimmerman, Z. Zhang and C. B. Musgrave, “Simultaneous Two-Hydrogen Transfer as a Mechanism for Efficient CO2 Reduction,” Inorganic Chemistry, Vol. 49, No. 19, 2010, pp. 8724-8728. doi:10.1021/ic100454z
[20] M. Pehnt, “Fuel Cells in the Power Market: Separating the Hope from the Hype,” Presentation at CAN Europe meeting, 27 May 2004, Brussels.
[21] A. J. Traynor and R. J. Jensen, “Direct Solar Reduction of CO2 to Fuel: First Prototype Results,” Industrial & Engineering Chemistry Research, Vol. 41, No. 8, 2002, pp. 1935-1939. doi:10.1021/ie010871x
[22] C. Mandil, “Prospects for CO2 Capture and Storage,” International Energy Agency and Energy Technology Analysis, IEA Publications, 2004.
[23] S. Bachu, “Sequestration of CO2 in Geological Media: Criteria and Approach for Site Selection in Response to Climate Change,” Energy Conversion and Management, Vol. 41, No. 9, 2000, pp. 953-970. doi:10.1016/S0196-8904(99)00149-1
[24] S. Bachu and J. J. Adams, “Sequestration of CO2 in Geological Media in Response to Climate Change: Capacity of Deep Saline Aquifers to Sequester CO2 in Solution,” Energy Conversion and Management, Vol. 44, No. 20, 2003, pp. 3151-3175. doi:10.1016/S0196-8904(03)00101-8
[25] R. G. Bruant, M. A. Celia, A. J. Guswa and C. A. Peters, “Safe Storage of CO2 in Deep Saline Aquifers,” Environmental Science and Technology, Vol. 36, No. 11, 2002, pp. 240A-245A. doi:10.1021/es0223325
[26] J. Gale, “Using Coal Seams for CO2 Sequestration,” Geologica Belgica, Vol. 7, No. 3-4, 2004, pp. 99-103.
[27] T. Holt, J. I. Jensen and E. Lindeberg, “Underground Storage of CO2 in Aquifers and Oil Reservoirs,” Energy Conversion and Management, Vol. 36, No. 6-9, 1995, pp. 535-538. doi:10.1016/0196-8904(95)00061-H
[28] C. W. Hustad, “Infrastructure for CO2 Collection, Transport and Sequestration,” The 3rd Nordic Mini-Symposium on Carbon Dioxide Storage, Presented paper, Trondheim, 1-2 October, 2003.
[29] F. V. Bergen, J. Gale, K. J. Damen and A. F. B. Wildenborg, “Worldwide Selection of Early Opportunities for CO2-Enhanced Oil Recovery and CO2-Enhanced Coal Bed Methane Production,” Energy, Vol. 29, No. 9-10, 2004, pp. 1611-1621. doi:10.1016/
[30] C. Salvador, D. Lu, E. J. Anthony and J. C. Abanades, “Enhancement of CaO for CO2 Capture in an FBC Environment,” Chemical Engineering Journal, Vol. 96, No. 3, 2003, pp. 187-195. doi:10.1016/j.cej.2003.08.011
[31] J. C. Hicks, J. H. Drese, D. J. Fauth, McMahan L. Gray, G. Qi and C. W. Jones, “Designing Adsorbents for CO2 Capture from Flue Gas-Hyperbranched Aminosilicas Capable of Capturing CO2 Reversibly,” Journal of the American Chemical Society, Vol. 130, No. 10, 2008, pp. 2902-2903. doi:10.1021/ja077795v
[32] S. K. Ritter, “What Can We Do with Carbon Dioxide? Scientists Are Trying to Find Ways to Convert the Plentiful Greenhouse Gas into Fuels and Other Value-Added Products,” Chemical & Engineering News, Vol. 85, No. 18, 2007, pp. 11-17.
[33] M.-J. Choi and D.-H. Cho1, “Review: Research Activities on the Utilization of Carbon Dioxide in Korea,” Clean, Vol. 36, No. 5-6, 2008, pp. 426-432.
[34] J. W. Dijkstra and D. Jansen, “Novel Concepts for CO2 Capture with SOFC,” Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, 1-4 October 2002 pp. 161-166. doi:10.1016/B978-008044276-1/50026-X
[35] K. W. Frese Jr., S. C. Leach and D. P. Summers, “Electrochemical Reduction of Aqueous Carbon Dioxide to Methanol,” US Patent No. 4,609,441, 2 September 1986.
[36] S. T. Hussain, M. M. Muhammad and H. U. Rehman, “Novel Process and Catalyst for Carbon Dioxide Conversion to Energy Generating Products,” Patent file numbers: IPC8 Class: AC07C2706FI, USPC Class: 518712.
[37] B. Dickson, I. Yashayaev, J. Meincke, B. Turrell, S. Dye and J. Holfort, “Rapid Freshening of the Deep North Atlantic Ocean over the Past Four Decades,” Nature, Vol. 416, No. 6883, 2002, pp. 832-837. doi:10.1038/416832a
[38] M. R. Dubois and D. L. Dubois, “Development of Molecular Electrocatalysts for CO2 Reduction and H2 Production/Oxidation,” Accounts of Chemical Research, Vol. 42, No. 12, 2009, pp. 1974-19982. doi:10.1021/ar900110c
[39] R. J. Jensen, J. L. Lyman, J. D. King and R. D. Guettler, “Solar Reduction of CO2”, US Patent No. 6,066,187, 23 May 2000.
[40] Exxon Mobil Algae Biofuels Research and Development Program, 1978.
[41] G. Seshadri, C. Lin and A. B. Bocarsly, “A New Electrocatalyst for the Reduction of Carbon Dioxide to Methanol at Low Overpotential,” Journal of Electroanalytical Chemistry, Vol. 372, No. 1-2, 1994, pp. 145-150. doi:10.1016/0022-0728(94)03300-5
[42] N. Spataru, K. Tokuhiro, C. Terashima, T. N. Rao and A. Fujishima, “Electrochemical Reduction of Carbon Dioxide at Ruthenium Dioxide Deposited on Boron-Doped Diamond,” Journal of Applied Electrochemistry, Vol. 33, No. 12, 2003, pp. 1205-1210. doi:10.1023/B:JACH.0000003866.85015.b6
[43] A. Fujishima, D. A. Tryk and T. N. Rao, “New Approaches in CO2 Reduction,” Advances in Chemical Conversions for Mitigating Carbon Dioxide, Vol. 114, 1998, pp. 31-42. In: T. Inuiv, M. Anpo, K. Izui, S. Yanagida and T. Yamaguchi, Ed., Studies in Surface Science and Catalysis, Book Series, Elsevier, Amsterdam.
[44] J. Ryu, T. N. Andersen and H. Eyring, “Electrode Reduction Kinetics of Carbon Dioxide in Aqueous Medium,” The Journal of Physical Chemistry, Vol. 76, No. 22, 1972, pp. 3278-3286. doi:10.1021/j100666a029
[45] K. Ogura and M. D. S. Viallalpando, “CO2 Electrochemical Reduction via Adsorbed Halide Anions,” Journal of Operations Management, Vol. 63, No. 1, pp. 35-38.
[46] S. Kapusta and N. Hackerman, “The Electroreduction of Carbon Dioxide and Formic Acid on Tin and Indium Electrodes,” Journal of The Electrochemical Society, Vol. 130, No. 3, 1983, pp. 607-613. doi:10.1149/1.2119761
[47] K. Ohashi, J. McCann and J. O. M. Bockris, “Stable Photoelectrochemical Cells for Splitting of Water,” Nature, Vol. 266, No. 5603, 1977, pp. 610-611. doi:10.1038/266610a0
[48] R. Bhardwaj, R. L. Pan and E. L. Gross, “Solar-Energy Conversion by Chloroplast Photoelectrochemical Cells,” Nature, Vol. 289, No. 5796, 1981, pp. 396-398. doi:10.1038/289396a0
[49] S. Licht, “A Description of Energy-Conversion in Photoelectrochemical Solar-Cells,” Nature, Vol. 330, No. 6144, 1987, pp. 148-151. doi:10.1038/330148a0
[50] M. Gratzel, “Photoelectrochemical Cells,” Nature, Vol. 414, No. 6861, 2001, pp. 338-344. doi:10.1038/35104607
[51] E. E. Barton, D. M. Rampulla and A. B. Bocarsly, “Selective Solar-Driven Reduction of CO2 to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell,” Journal of the American Chemical Society, Vol. 130, No. 20, 2008, pp. 6342-6344. doi:10.1021/ja0776327
[52] R. M. Williams and A. Rembaum, “Photoelectrochemical Electrodes,” US Patent No. 4,414,080, 8 November 1983.
[53] A. J. Frank, “Organic Conductive Films for Semiconductor Electrodes,” US Patent No. 4,461,691, 24 July 1984.
[54] M. Gratzel and K. Kalyanasundaram, “Artificial Photosynthesis: Efficient Dye-Sensitized Photoelectrochemical Cells for Direct Conversion of Visible-Light to Electricity,” Current Science, Vol. 66, No. 10, 1994, pp. 706-714.
[55] A. J. Bard, “Semiconductor Photoelectrochemical Cells,” Journal of the Electrochemical Society, Vol. 126, No. 3, 1979, pp. C145-C145.
[56] D. Haneman, “Surfaces for Photoelectrochemical Cells,” Surface Science, Vol. 86, 1979, pp. 462-485. doi:10.1016/0039-6028(79)90424-2
[57] J. Manassen, G. Hodes and D. Cahen, “Photoelectrochemical Cells,” Chemical Technology, Vol. 11, No. 2, 1981, pp. 112-117.
[58] S. Yae, T. Kobayashi, M. Abe, N. Nasu, N. Fukumuro, S. Ogawa, N. Yoshida, S. Nonomura, Y. Nakato and H. Matsuda, “Solar to Chemical Conversion Using Metal Nano- particle Modified Microcrystalline Silicon Thin Film Photoelectrode,” Solar Energy Materials & Solar Cells, Vol. 91, No. 4, 2007, pp. 224-229.
[59] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, Vol. 238, No. 5358, 1972, pp. 37-38. doi:10.1038/238037a0
[60] A. Fujishima, K. Kohayakawa and K. Honda, “Formation of Hydrogen Gas with an Electrochemical Photo-Cell,” Bulletin of the Chemical Society of Japan, Vol. 48, No. 3, 1975, pp. 1041-1042. doi:10.1246/bcsj.48.1041
[61] T. Watanabe, T. Fujishima and K. Honda, “Photoelctrochemical Hydrogen Production,” In: T. Ohta, Ed., Solar Hydrogen Energy Systems, Pergamon Press, Oxford, 1979, pp. 137-169.
[62] F. Jiao and H. Frei, “Water Oxidation: Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts,” Angewandte Chemie, Vol. 121, No. 10, 2009, pp. 1873-1876. doi:10.1002/ange.200805534
[63] Y. V. Geletii, B. Botar, P. Kogerler, D. A. Hillesheim, D. G. Musaev and C. L. Hill, “Oxygen Generation: An All-In- organic, Stable, and Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation,” Angewandte Chemie, Vol. 47, No. 21, 2008, pp. 3896-3899. doi:10.1002/anie.200705652
[64] Q. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Mu- saev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle and C. L. Hill, “A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals,” Science, Vol. 328, No. 5976, 2010, pp. 342-345. doi:10.1126/science.1185372
[65] Y. V. Geletii, Q. Yin, Y. Hou, Z. Huang, H. Ma, J. Song, C. Besson, Z. Luo, R. Cao, K. P. O’Halloran, C. Zhao, J. W. Vickers, Y. Ding, S. Mohebbi, A. E. Kuznetsov, D. G. Musaev, T. Lian and C. L. Hill, “Polyoxometalates in the Design of Effective and Tunable Water Oxidation Catalysts―A Review,” Israel Journal of Chemistry, Vol. 51, No. 2, 2011, pp. 238-246. doi:10.1002/ijch.201100021
[66] K. V. C. Rao, M. R. Rao, M. P. Nair, V. G. Kumar and C. G. R. Nair, “TiO2-SiO2 Based Photoanodes in Photoelectrochemical Cells―Performance and Evaluation Studies,” International Journal of Hydrogen Energy, Vol. 14, No. 5, 1989, pp. 295-301. doi:10.1016/0360-3199(89)90129-8
[67] B. van der Zwaan and A. Rabl, “The Learning Potential of Photovoltaics: Implications for Energy Policy,” Energy Policy, Vol. 32, No. 13, 2004, pp. 1545-1554. doi:10.1016/S0301-4215(03)00126-5
[68] S. Chandra, P. K. Pandey and R. C. Agrawal, “Solar Energy Conversion by Photoelectrichemical Cells Using Chemical-Bath-Deposited CdS Films,” Journal of Physics D: Applied Physics, Vol. 13, No. 9, 1980, pp. 1757- 1760. doi:10.1088/0022-3727/13/9/025
[69] A. Gupta and A. S. N. Murthy, “Photoelectrochemical Behaviour of Polypyrrole Coated Cadmium Telluride,” Solar Energy Materials and Solar Cells, Vol. 28, No. 2, 1992, pp. 113-121. doi:10.1016/0927-0248(92)90003-8
[70] T. Bak, J. Nowotny, M. Rekas and C. C. Sorrell, “Review Article: Photo-Electrochemical Hydrogen Generation from Water Using Solar Energy. Materials-Related Aspects,” International Journal of Hydrogen Energy, Vol. 27, No. 10, 2002, pp. 991-1022.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.