[1]
|
Frank, S.M., Fleisher, L.A., Breslow, M.J., Higgins, M.S., Olson, K.F., Kelly, S. and Beattie, C. (1997) Perioperative Maintenance of Normothermia Reduces the Incidence of Morbid Cardiac Events. A Randomized Clinical Trial. JAMA, 277, 1127-1134. https://doi.org/10.1001/jama.1997.03540380041029
|
[2]
|
Selldén, E. and Lindahl, S.G. (1999) Amino Acid-Induced Thermogenesis Reduces Hypothermia during Anesthesia and Shortens Hospital Stay. Anesthesia & Analgesia, 89, 1551-1556. https://doi.org/10.1213/00000539-199912000-00045
|
[3]
|
Beilman, G.J., Blondet, J.J., Nelson, T.R., Nathens, A.B., Moore, F.A., Rhee, P., Puyana, J.C., Moore, E.E. and Cohn, S.M. (2009) Early Hypothermia in Severely Injured Trauma Patients Is a Significant Risk Factor for Multiple Organ Dysfunction Syndrome But Not Mortality. Annals of Surgery, 249, 845-850.
https://doi.org/10.1097/SLA.0b013e3181a41f6f
|
[4]
|
Selldén, E., Brundin, T. and Wahren, J. (1994) Augmented Thermic Effect of Amino Acids under General Anaesthesia: A Mechanism Useful for Prevention of Anaesthesia-Induced Hypothermia. Clinical Science (Lond), 86, 611-618.
https://doi.org/10.1042/cs0860611
|
[5]
|
Ikeda, T., Ozaki, M., Sessler, D.I., Kazama, T., Ikeda, K. and Sato, S. (1999) Intraoperative Phenylephrine Infusion Decreases the Magnitude of Redistribution Hypothermia. Anesthesia & Analgesia, 89, 462-465.
|
[6]
|
Widman, J., Hammarqvist, F. and Selldén, E. (2002) Amino Acid Infusion Induces Thermogenesis and Reduces Blood Loss during Hip Arthroplasty under Spinal Anesthesia. Anesthesia & Analgesia, 95, 1757-1762.
https://doi.org/10.1097/00000539-200212000-00053
|
[7]
|
Kasai, T., Nakajima, Y., Matsukawa, T., Ueno, H., Sunaguchi, M. and Mizobe, T. (2003) Effect of Preoperative Amino Acid Infusion on Thermoregulatory Response during Spinal Anaesthesia. British Journal of Anaesthesia, 90, 58-61.
https://doi.org/10.1093/bja/aeg020
|
[8]
|
Sessler, D.I. (2010) Temperature Monitoring. In: Miller, R.D., Ed., Anesthesia, 7th Edition, Churchill Livingstone, Philadelphia, 1533-1556.
|
[9]
|
Matsukawa, T., Sessler, D.I., Christensen, R., Ozaki, M. and Schroeder, M. (1995) Heat Flow and Distribution during Epidural Anesthesia. Anesthesiology, 83, 961-967. https://doi.org/10.1097/00000542-199511000-00008
|
[10]
|
Sessler, D.I. (2000) Perioperative Heat Balance. Anesthesiology, 92, 578-596.
https://doi.org/10.1097/00000542-200002000-00042
|
[11]
|
Patel, N., Smith, C.E., Pinchak, A.C. and Hagen, J.F. (1996) Prospective, Randomized Comparison of the FlotemIie and Hotline Fluid Warmers in Anesthetized Adults. Journal of Clinical Anesthesia, 8, 307-316.
|
[12]
|
Oddo, M., Frangos, S., Maloney-Wilensky, E., Andrew Kofke, W., Le Roux, P.D. and Levine, J.M. (2010) Effect of Shivering on Brain Tissue Oxygenation during Induced Normothermia in Patients with Severe Brain Injury. Neurocritical Care, 12, 10-16. https://doi.org/10.1007/s12028-009-9280-2
|
[13]
|
Heier, T., Caldwell, J.E., Sessler, D.I. and Miller, R.D. (1991) Mild Intraoperative Hypothermia Increases Duration of Action and Spontaneous Recovery of Vecuronium Blockade during Nitrous Oxide-Isoflurane Anesthesia in Humans. Anesthesiology, 74, 815-819. https://doi.org/10.1097/00000542-199105000-00003
|
[14]
|
Schmied, H., Kurz, A., Sessler, D.I., Kozek, S. and Reiter, A. (1996) Mild Hypothermia Increases Blood Loss and Transfusion Requirements during Total Hip Arthroplasty. The Lancet, 347, 289-292.
|
[15]
|
Rajagopalan, S., Mascha, E., Na, J. and Sessler, D.I. (2008) The Effects of Mild Perioperative Hypothermia on Blood Loss and Transfusion Requirement. Anesthesiology, 108, 71-77. https://doi.org/10.1097/01.anes.0000296719.73450.52
|
[16]
|
Wolberg, A.S., Meng, Z.H., Monroe, D.M. and Hoffman, M.A. (2004) Systematic Evaluation of the Effect of Temperature on Coagulation Enzyme Activity and Platelet function. Journal of Trauma, 56, 1221-1228.
https://doi.org/10.1097/01.TA.0000064328.97941.FC
|
[17]
|
Kurz, A., Sessler, D.I. and Lenhardt, R. (1996) Perioperative Normothermia to Reduce the Incidence of Surgical-Wound Infection and Shorten Hospitalization. Study of Wound Infection and Temperature Group. The New England Journal of Medicine, 334, 1209-1215. https://doi.org/10.1056/NEJM199605093341901
|
[18]
|
Melling, A.C., Ali, B., Scott, E.M. and Leaper, D.J. (2001) Effects of Preoperative Warming on the Incidence of Wound Infection after Clean Surgery: A Randomised Controlled Trial. The Lancet, 358, 876-880.
|
[19]
|
Bush, H.L., Hydo, L.J., Fischer, E., Fantini, G.A., Silane, M.F. and Barie, P.S. (1995) Hypothermia during Elective Abdominal Aortic Aneurysm Repair: The High Price of Avoidable Morbidity. Journal of Vascular Surgery, 21, 392-400.
|
[20]
|
Busto, R., Dietrich, W.D., Globus, M.Y., Valdés, I., Scheinberg, P. and Ginsberg, M.D. (1987) Small Differences in Intraischemic Brain Temperature Critically Determine the Extent of Ischemic Neuronal Injury. Journal of Cerebral Blood Flow & Metabolism, 7, 729-738. https://doi.org/10.1038/jcbfm.1987.127
|
[21]
|
Cook, D.J., Orszulak, T.A. and Daly, R.C. (1998) Minimum Hematocrit at Differing Cardiopulmonary Bypass Temperatures in Dogs. Circulation, 98, 170-174.
|
[22]
|
Al-Hashimi, S., Zaman, M., Waterworth, P. and Bilal, H. (2013) Does the Use of Thiopental Provide Added Cerebral Protection during Deep Hypothermic Circulatory Arrest? Interactive CardioVascular and Thoracic Surgery, 17, 392-397.
https://doi.org/10.1093/icvts/ivt184
|
[23]
|
Siddik-Sayyid, S.M., Abdallah, F.W. and Dahrouj, G.B. (2008) Thermal Burns in Three Neonates Associated with Intraoperative Use of Bair Hugger Warming Devices. Pediatric Anesthesia, 18, 337-339.
https://doi.org/10.1111/j.1460-9592.2008.02474.x
|
[24]
|
Albrecht, M., Gauthier, R.L., Belani, K., Litchy, M. and Leaper, D. (2011) Forced-Air Warming Blowers: An Evaluation of Filtration Adequacy and Airborne Contamination Emissions in the Operating Room. American Journal of Infection Control, 39, 321-328.
|
[25]
|
Mizobe, T., Nakajima, Y., Ueno, H. and Sessler, D.I. (2006) Fructose Administration Increases Intraoperative Core Temperature by Augmenting Both Metabolic Rate and the Vasoconstriction Threshold. Anesthesiology, 104, 1124-1130.
https://doi.org/10.1097/00000542-200606000-00005
|
[26]
|
Woods, H.F. and Alberti, K.G. (1972) Dangers of Intravenous Fructose. The Lancet, 2, 1354-1357.
|
[27]
|
Selldén, E., Bränström, R. and Brundin, T. (1996) Preoperative Infusion of Amino Acids Prevents Postoperative Hypothermia. British Journal of Anaesthesia, 76, 227-234. https://doi.org/10.1093/bja/76.2.227
|
[28]
|
Flatt, J.P. (1978) The Biochemistry of Energy Expenditure. In: Bray, G., Ed., Recent Advances in Obesity Research, Newman, London, Vol. 2, Chapter 22, 211-228.
|
[29]
|
Yamaoka, I., Doi, M., Nakayama, M., Ozeki, A., Mochizuki, S., Sugahara, K. and Yoshizawa, F. (2006) Intravenous Administration of Amino Acids during Anesthesia Stimulates Muscle Protein Synthesis and Heat Accumulation in the Body. American Journal of Physiology, 290, E882-E888.
https://doi.org/10.1152/ajpendo.00333.2005
|
[30]
|
Shah, O.J., Anthony, J.C., Kimball, S.R. and Jefferson, L.S. (2000) 4E-BP1 and S6K1: Translational Integration Sites for Nutritional and Hormonal Information in Muscle. American Journal of Physiology-Endocrinology and Metabolism, 279, E715-E729.
|
[31]
|
Yamaoka, I., Doi, M., Kawano, Y., Nakayama, M., Watanabe, Y., Oba, K., Sugahara, K. and Yoshizawa, F. (2009) Insulin Mediates the Linkage Acceleration of Muscle Protein Synthesis, Thermogenesis, and Heat Storage by Amino Acids. Biochemical and Biophysical Research Communications, 386, 252-256.
|
[32]
|
Yamaoka, I., Mikura, M., Nishimura, M., Doi, M., Kawano, Y. and Nakayama, M. (2008) Enhancement of Myofibrillar Proteolysis Following Infusion of Amino Acid Mixture Correlates Positively with Elevation of Core Body Temperature in Rats. Journal of Nutritional Science and Vitaminology, 54, 467-474.
https://doi.org/10.3177/jnsv.54.467
|
[33]
|
Mikura, M., Yamaoka, I., Doi, M., Kawano, Y., Nakayama, M., Nakao, R., Hirasaka, K., Okumura, Y. and Nikawa, T. (2009) Glucose Infusion Suppresses Surgery-Induced Muscle Protein Breakdown by Inhibiting Ubiquitin-Proteasome Pathway in Rats. Anesthesiology, 110, 81-88.
https://doi.org/10.1097/ALN.0b013e318190b6c1
|
[34]
|
Kanazawa, M., Ando, S., Tsuda, M. and Suzuki, T. (2010) The Effect of Amino Acid Infusion on Anesthesia-Induced Hypothermia in Muscle Atrophy Model Rats. Journal of Nutritional Science and Vitaminology, 56, 117-122.
https://doi.org/10.3177/jnsv.56.117
|
[35]
|
Selldén, E., Bränström, R. and Brundin, T. (1996) Augmented Thermic Effect of Amino Acids under General Anaesthesia Occurs Predominantly in Extra-Splanchnic Tissues. Clinical Science, 91, 431-439.
https://doi.org/10.1042/cs0910431
|
[36]
|
Aksnes, A.K., Brundin, T., Hjeltnes, N., Maehlum, S. and Wahren, J. (1993) Meal-Induced Rise in Resting Energy Expenditure in Patients with Complete Cervical Spinal Cord Lesions. Paraplegia, 31, 462-472.
https://doi.org/10.1038/sc.1993.75
|
[37]
|
Nakajima, Y., Takamata, A., Matsukawa, T., Sessler, D.I., Kitamura, Y., Ueno, H., Tanaka, Y. and Mizobe, T. (2004) Effect of Amino Acid Infusion on Central Thermoregulatory Control in Humans. Anesthesiology, 100, 634-639.
https://doi.org/10.1097/00000542-200403000-00025
|
[38]
|
Rothman, D.L., Magnusson, I., Katz, L.D., Shulman, R.G. and Shulman, G.I. (1991) Quantitation of Hepatic Glycogenolysis and Gluconeogenesis in Fasting Humans with 13C NMR. Science, 254, 573-576. https://doi.org/10.1126/science.1948033
|
[39]
|
Botham, K.M. (2009) Chapter 22 Oxidation of Fatty Acids: Ketogenesis. 28th Edition, Harper’s Illustrated Biochemistry, Lange Medical Book, New York.
|
[40]
|
Yokoyama, T., Suwa, K., Yamasaki, F., Yokoyama, R., Yamashita, K. and Sellden, E. (2008) Intraoperative Infusion of Acetated Ringer Solution Containing Glucose and Ionized Magnesium Reduces Ketogenesis and Maintains Serum Magnesium. Asia Pacific Journal of Clinical Nutrition, 17, 525-529.
|
[41]
|
Yamasaki, K., Inagaki, Y., Mochida, S., Funaki, K., Takahashi, S. and Sakamoto, S. (2010) Effect of Intraoperative Acetated Ringer’s Solution with 1% Glucose on Glucose and Protein Metabolism. Journal of Anesthesia, 24, 426-431.
https://doi.org/10.1007/s00540-010-0926-1
|
[42]
|
Fujita, Y., Tokunaga, C., Yamaguchi, S., Nakamura, K., Horiguchi, Y., Kaneko, M. and Iwakura, T. (2014) Effect of Intraoperative Amino Acids with or without Glucose Infusion on Body Temperature, Insulin, and Blood Glucose Levels in Patients Undergoing Laparoscopic Colectomy: A Preliminary Report. Acta Anaesthesiologica Taiwanica, 52, 101-106.
|
[43]
|
Imoto, A., Yokoyama, T., Suwa, K., Yamasaki, F., Yatabe, T., Yokoyama, R., Yamashita, K. and Selldén, E. (2010) Bolus Oral or Continuous Intestinal Amino Acids Reduce Hypothermia during Anesthesia in Rats. Journal of Nutritional Science and Vitaminology, 56, 104-108. https://doi.org/10.3177/jnsv.56.104
|