[1]
|
Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843- 854. doi:10.1016/0092-8674(93)90529-Y
|
[2]
|
Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-297.
doi:10.1016/S0092-8674(04)00045-5
|
[3]
|
Bartel, D.P. (2009) MicroRNAs: target recognition and regulatory functions. Cell, 136, 215-233.
doi:10.1016/j.cell.2009.01.002
|
[4]
|
Griffiths-Jones, S., Saini, H.K., van Dongen, S. and En- right, A.J. (2008) miRBase: Tools for microRNA genom- ics. Nucleic Acids Research, 36, D154-D158.
|
[5]
|
Sheng, Y., Engstrom, P.G. and Lenhard, B. (2007) Mam- malian microRNA prediction through a support vector machine model of sequence and structure. PLoS One, 2, e946. doi:10.1371/journal.pone.0000946
|
[6]
|
van den Berg, A., Mols, J. and Han, J. (2008) RISC- target interaction: Cleavage and translational suppression. Biochimica Biophysica Acta, 1779, 668-677.
|
[7]
|
Friedman, R.C., Farh, K.K., Burge, C.B. and Bartel, D.P. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19, 92-105.
|
[8]
|
Bueno, M.J., de Castro, I.P. and Malumbres, M. (2008) Control of cell proliferation pathways by microRNAs. Cell Cycle, 7, 3143-3148. doi:10.1101/gr.082701.108
|
[9]
|
He, L. and Hannon, G.J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5, 522-531. doi:10.1038/nrg1379
|
[10]
|
Jovanovic, M. and Hengartner, M.O. (2006) microRNAs and apoptosis: RNAs to die for. Oncogene, 25, 6176- 6187. doi:10.1038/sj.onc.1209912
|
[11]
|
Krutzfeldt, L. and Stoffel, M. (2006) MicroRNAs: A new class of regulatory genes affecting metabolism. Cell Matabolism, 4, 9-12. doi:10.1016/j.cmet.2006.05.009
|
[12]
|
Stefani, G. and Slack, F.J. (2008) Small noncoding RNAs in animal development. Nature Reviews Molar Cell Biology, 9, 219-230. doi:10.1038/nrm2347
|
[13]
|
He, X., Eberhart, J.K. and Postlethwait J.H. (2009) Mi- croRNAs and micro-managing the skeleton in diease, development, and evolution. Journal of Cellular and Molecular Medicine, 13, 606-618.
doi:10.1111/j.1582-4934.2009.00696.x
|
[14]
|
Schulte, J.H., Marschall. T., Martin, M., et al. (2010) Deep sequencing reveals differential expression of mi- croRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Research, 38, 5919-5928.
doi:10.1093/nar/gkq342
|
[15]
|
Fasanaro, P., Greco, S., Ivan, M., Capogrossi, M.C. and Martelli, F. (2010) microRNA: Emerging therapeutic tar- gets in acute ischemic diseases. Pharmacology Therapeutics, 125, 92-104.
doi:10.1016/j.pharmthera.2009.10.003
|
[16]
|
Trang, P., Weidhaas, J.B. and Slack, F.J. (2008) Mi- croRNAs as potential cancer therapeutics. Oncogene, 27, S52-S57. doi:10.1038/onc.2009.353
|
[17]
|
Jiang, Q., Wang, Y., Hao, Y., et al. (2009) miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acid Research, 37, D98-D104.
doi:10.1093/nar/gkn714
|
[18]
|
Hennessy, E. and O’Driscoll, L. (2008) Molecular medi- cine of microRNAs: Structure, function, and implications for diabetes. Expert Reviews in Molecular Medicine, 10, e24. doi:10.1017/S1462399408000781
|
[19]
|
van Rooij, E., Sutherland, L.B., Liu, N., et al. (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences, 103, 18255-18260. doi:10.1073/pnas.0608791103
|
[20]
|
Barbato, C., Giorge, C., Catalanotto, C. and Cogoni C. (2008) Thinking about RNA? MicroRNAs in the brain. Mammalian Genome, 19, 541-551.
doi:10.1007/s00335-008-9129-6
|
[21]
|
Beveridge, N.J., Gardiner, E., Carroll, A.P., et al. (2009) Schizophrenia is associated with an increase in cortical microRNA biogenesis. Molecular Psychiatry, 15, 1176- 1189. doi:10.1038/mp.2009.84
|
[22]
|
Medina, P.P. and Slack, F.J. (2008) microRNAs and can- cer: An overview. Cell Cycle, 7, 2485-2492.
doi:10.4161/cc.7.16.6453
|
[23]
|
Nana-Sinkam, S.P. and Croce, C.M. (2011) MicroRNAs as therapeutic targets in cancer. Translational Research, 157, 216-225. doi:10.1016/j.trsl.2011.01.013
|
[24]
|
Chen, C.Z. (2005) MicroRNAs as oncogenes and tumor suppressors. The New England Journal of Medicine, 353, 1768-1771. doi:10.1056/NEJMp058190
|
[25]
|
Lagos-Quintana, M., Rauhut, R., Lendeckel, W. and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science, 294, 853-858.
doi:10.1126/science.1064921
|
[26]
|
Chen, C., Ridzon, D.A., Broomer, A.J., et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33, e179.
doi:10.1093/nar/gni178
|
[27]
|
Shi, R. and Chiang, V.L. (2005) Facile means for quanti- fying microRNA expression by real-time PCR. Biotech- niques, 39, 519-525. doi:10.2144/000112010
|
[28]
|
Yin, J.Q., Zhao, R.C. and Morris, K.V. (2008) Profiling microRNA expression with microarrays. Trends Bio- technol, 26, 70-76. doi:10.1016/j.tibtech.2007.11.007
|
[29]
|
Li, W. and Ruan, K. (2009) MicroRNA detection by mi- croarray. Analytical Bioanalytical Chemistry, 394, 1117- 1124. doi:10.1007/s00216-008-2570-2
|
[30]
|
Hafner, M., Landgraf, P., Ludwig, J., et al. (2008) Identi- fication of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods, 44, 3-12. doi:10.1016/j.ymeth.2007.09.009
|
[31]
|
Roush, S. and Slack, F.J. (2008) The let-7 family of mi- croRNAs. Trends in Cell Biology, 18, 505-516.
doi:10.1016/j.tcb.2008.07.007
|
[32]
|
Buermans, H.P., Ariyurek, Y., van Ommen, G., et al. (2010) New methods for next generation sequencing based microRNA expression profiling. BMC Genomics, 11, 716. doi:10.1186/1471-2164-11-716
|
[33]
|
Metzker, M.L. (2010) Sequencing technologies—the next generation. Nature Reviews Genetics, 11, 31-46.
doi:10.1038/nrg2626
|
[34]
|
‘t Hoen, P.A, Ariyurek, Y., Thygesen, H.H., et al. (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab por- tability over five microarray platforms. Nucleic Acids Research, 36, e141. doi:10.1093/nar/gkn705
|
[35]
|
Sanger, f., Air, g.m., Barrell, b.g., et al. (1977) Nucleo- tide sequence of bacteriophage X174 D. Nature, 265, 687-695.
|
[36]
|
Sanger, F., Nicklen, S., Coulson, A.R., et al. (1977) DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74, 5463- 5467. doi:10.1073/pnas.74.12.5463
|
[37]
|
Margulies, M., Egholm, M., Altman, W.E., et al. (2005) Genome sequencing in microfabricated high-density pi- colitre reactors. Nature, 437, 376-380.
|
[38]
|
Mocali, S. and Benedetti, A. (2010) Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Research in Microbiology, 161, 497-505. doi:10.1016/j.resmic.2010.04.010
|
[39]
|
Langmead, B., Trapnell, C., Pop, M. and Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10, R25. doi:10.1186/gb-2009-10-3-r25
|
[40]
|
Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinfor- matics, 25, 1754-1760.
doi:10.1093/bioinformatics/btp324
|
[41]
|
Li, H.; Ruan, J. and Durbin, R. (2008) Mapping short DNA sequencing reads and calling variants using map- ping quality scores. Genome Research, 18, 1851-1858. doi:10.1101/gr.078212.108
|
[42]
|
Jiang, H. and Wong, W.H. (2008) SeqMap: mapping massive amount of oligonucleotides to the genome. Bio- informatics, 24, 2395-2396.
doi:10.1093/bioinformatics/btn429
|
[43]
|
Li, R., Li, Y., Kristiansen, K. and Wang, J. (2008) SOAP: short oligonucleotide alignment program. Bioinformatics, 24, 713-714. doi:10.1093/bioinformatics/btn025
|
[44]
|
Trapnell, C., Pachter, L. and Salzberg, S.L. (2009) To- pHat: discovering splice junctions with RNA-Seq. Bio- informatics, 25, 1105-1111.
doi:10.1093/bioinformatics/btp120
|
[45]
|
Yang, J.H., Shao, P., Zhou, H., Chen, Y.Q. and Qu, L.H. (2010) deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Research, 38, D123-D130. doi:10.1093/nar/gkp943
|
[46]
|
Betel, D., Wilson, M., Gabow, A., Marks, D.S. and Sander, C. (2008) The microRNA.org resource: targets and expression. Nucleic Acids Research, 36, D149-D153.
doi:10.1093/nar/gkm995
|
[47]
|
Alexiou, P., Vergoulis, T., Gleditzsch, M., et al. (2010) miRGen 2.0: a database of microRNA genomic informa- tion and regulation. Nucleic Acids Research, 38, D137- D141. doi:10.1093/nar/gkp888
|
[48]
|
Hsu, S.D., Chu, C.H. and Tsou, A.P. (2008) miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Research, 36, D165-D169.
doi:10.1093/nar/gkm1012
|
[49]
|
Zhang, Z., Yu, J., Li, D., et al. (2010) PMRD: plant mi- croRNA database. Nucleic Acids Res, 38, D806-D813.
doi:10.1093/nar/gkp818
|
[50]
|
John, B., Enright, A.J., Aravin, A., et al. (2004) Human MicroRNA targets. PLoS Biology, 2, e363. doi:10.1371/journal.pbio.0020363
|
[51]
|
Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., et al. (2003) Prediction of mammalian microRNA targets. Cell, 115, 787-798. doi:10.1016/S0092-8674(03)01018-3
|
[52]
|
Kruger, J. and Rehmsmeier, M. (2006) RNAhybrid: mi- croRNA target prediction easy, fast and flexible. Nucleic Acids Research, 34, W451-W454.
doi:10.1093/nar/gkl243
|
[53]
|
Hackenberg, M., Sturm, M., Langenberger, D., Fal- cón-Pérez, J.M. and Aransay, A.M. (2009) miRanalyzer: a microRNA detection and analysis tool for next-genera- tion sequencing experiments. Nucleic Acids Research, 37, W68-W76.
|
[54]
|
Hackenberg, M., Rodríguez-Ezpeleta, N. and Aransay, A.M. (2011) miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Research, 39, W132-W138.
doi:10.1093/nar/gkr247
|
[55]
|
Moxon, S., Schwach, F. and Dalmay, T. (2008) A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics, 24, 2252-2253.
doi:10.1093/bioinformatics/btn428
|
[56]
|
Friedl?nder, M.R., Chen, W., Adamidi, C., et al. (2008) Discovering microRNAs from deep sequencing data us- ing miRDeep. Nature Biotechnology, 26, 407-415.
doi:10.1038/nbt1394
|
[57]
|
Wang, W.C., Lin, F.M. and Chang, W.C. (2009) miREx- press: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics, 10, 328. doi:10.1186/1471-2105-10-328
|
[58]
|
Breiman, L. (2001) Random forests. Machine Learning, 45, 5-32. doi:10.1023/A:1010933404324
|
[59]
|
Prüfer, K., et al. (2008) PatMaN: rapid alignment of short sequences to large databases. Bioinformatics, 24, 1530- 1531. doi:10.1093/bioinformatics/btn223
|
[60]
|
DiMasi, J.A., Hansen, R.W. and Grabowski, H.G. (2003) The Price of Innovation: New Estimates of Drug Devel- opmentCosts. Journal of Health Economics, 22, 151-185.
doi:10.1016/S0167-6296(02)00126-1
|
[61]
|
Adams, C.P. and Brantner, V.V. (2006) Estimating The Cost Of New Drug Development: Is It Really $802 Mil- lion? Health Affairs, 25, 420-428.
doi:10.1377/hlthaff.25.2.420
|
[62]
|
Dreyer, J.L. (2010) New insights into the roles of mi- croRNAs in drug addiction and neuroplasticity. Genome Medicine, 2, 92. doi:10.1186/gm213
|
[63]
|
Ueda, T., Volinia, S, Okumura, H., et al. (2010) Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol, 11, 136-146.
doi:10.1016/S1470-2045(09)70343-2
|
[64]
|
Kumar, M.S., Lu, J., Mercer, K.L., et al. (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genetics, 39, 673-677.
doi:10.1038/ng2003
|
[65]
|
Mitchell, P.S., Parkin, R.K., Kroh, E.M., et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences, 105, 10513-10518.
doi:10.1073/pnas.0804549105
|
[66]
|
Long, J.M. and Lahiri, D.K. (2011) MicroRNA-101 downregulates Alzheimer’s amyloid-β precursor protein levels in human cell cultures and is differentially ex- pressed. Biochem and Biophysical Research Communations, 404, 889-895. doi:10.1016/j.bbrc.2010.12.053
|
[67]
|
Jopling, C.L., Yi, M., Lancaster, A.M., et al. (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 309, 1577-1581.
doi:10.1126/science.1113329
|
[68]
|
Villanueva, R.A., Jangra, R.K., Yi, M., et al. (2010) miR- 122 does not modulate the elongation phase of hepatitis C virus RNA synthesis in isolated replicase complexes. Antiviral Research, 88, 119-123.
doi:10.1016/j.antiviral.2010.07.004
|
[69]
|
Su, Z., Ning, B., Fang, H., et al. (2011) Next-generation sequencing and its applications in molecular diagnostics. Expert Review of Molecular Diagnonstics, 11, 333-343.
|
[70]
|
Rogers, G.B. and Bruce, K.D. (2010) Next-generation sequencing in the analysis of human microbiota:essential considerations for clinical application. Molecular Diagnosis & Therapy, 14, 343-350.
|