A Statistical Rate Theory of Interface Concentration during Solution ZeoliteCrystal Growth
Hongwei Song, Olusegun J. Ilegbusi
DOI: 10.4236/jcpt.2011.13006   PDF    HTML     4,440 Downloads   8,645 Views  


A theoretical model is developed using statistical rate theory to determine the rate of molecular transport across the interface of a growing spherical zeolite crystal. The model is expressed in terms of the interface concentration. Two model constants appear in the expression for the equilibrium exchange rate. In order to validate the model, zeolite crystallization is investigated for a system for which experimental data exist. The model constants were first established using the measured growth rates at a specific temperature. Then the model was used to predict the growth rate at other temperatures.

Share and Cite:

H. Song and O. Ilegbusi, "A Statistical Rate Theory of Interface Concentration during Solution ZeoliteCrystal Growth," Journal of Crystallization Process and Technology, Vol. 1 No. 3, 2011, pp. 33-40. doi: 10.4236/jcpt.2011.13006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. R. Geus, A. Mulder, D. J. Vischjager and J. Birlein, “Inclusion Tuning of Nonlinear Optical Materials: Switching The SHG of p-Nitroaniline and 2-Methyl- p-Nitroaniline with Molecular Sieve Hosts,” Journal of the American Chemical Society, Vol. 110, No. 9, 1988, pp. 2986-2987. doi:10.1021/ja00217a057
[2] J. Warzywoda, A. G. Dixon, R. W. Thompson and Albert Sacco Jr., “Synthesis and Control of the Size of Large Mordenite Crystals Using Porous Silica Substrates,” Journal of Materials Chemistry, Vol. 5, No. 7, 1995, p. 1019. doi:10.1039/jm9950501019
[3] A. Sacco Jr., “The NASA GAS Program: A Stepping Stone to Education,” IEEE Transactions on Education, Vol. 34, No. 1, 1991, pp. 27-30. doi:10.1109/13.79875
[4] S. P. Zhdanov, “Molecular Sieve Zeolites,” In: R. F. Gould, Ed., Advances in Chemistry Series, Washington, DC, 1971, p. 20.
[5] A Sacco Jr., N. Bac, J. Warzywoda, I. Guray, R. W. Thompson and L. A. McCauley, “Zeolite Crystal Growth in Microgravity,” Proceedings of Space Technology and Applications, Albuquerque, 1996, pp. 429- 432,
[6] A Sacco Jr., N. Bac, J. Warzywoda, I. Guray, M. Marceau, T. L. Sacco and L. M. Whalen, “Zeolite Crystal Growth (ZCG) Flight on USML-2,” Final Report, NASA Contract No.: NAS8-40260.
[7] F. Otalora, M. L. Novella, J. A. Gavira, B. R. Thomas and J. M. G. Ruiz, “Experimental Evidence for the Stability of the Depletion Zone around a Growing Protein Crystal under Microgravity,” Acta Crystallographica, Vol. D57, 2001, pp. 412-417. doi:10.1107/S0907444901000555
[8] S. Bosnar, T. Antoni?, J. Broni? and B. Suboti?, “Me-chanism and Kinetics of the Growth of Zeolite Micro-crystals. Part 2: Influence of Sodium Ions Concentration in the Liquid Phase on the Growth Kinetics of Zeolite A Microcrystals,” Microporous and Mesoporous Materials, Vol. 76, No. 1-3, 2004, pp. 157-165. doi:10.1016/j.micromeso.2004.07.021
[9] H. W. Song, O. J. Ilegbusi, A. Sacco Jr., “Effects of Gravity on Zeolite Crystallization from Solution,” Journal of Crystal Growth, Vol. 277, No. 1-4, 2005, pp. 623-630. doi:10.1016/j.jcrysgro.2004.12.161
[10] H. W. Song, O. J. Ilegbusi, A. Sacco Jr., “Kinetics of Zeolite NaA Crystallization in Microgravity,” Materials Letters, Vol. 59, No. 21, 2005, pp. 2668-2672. doi:10.1016/j.matlet.2005.04.015
[11] I. J. Kim and H. J. Lee, “Effects of Seeding on the For-mation of Large NaX Zeolite Crystals, Materials Science Forum, Functionally Graded Materials VIII,” In: O. Van der Biest, M. Gasik, J. Vleugels, Eds., Vols. 492-493, 2005, pp. 287-292.
[12] B. M. Lowe, in Innovation in Zeolite Materials Science, “Studies in Surface Science and Catalysis,” Vol. 37, Eds. P. J. Grobt, W. J. Mortier, E. F. Vansant and G. F. Schulz-Ekloff), Elsevier, Amesterdam, 1988.
[13] A. Berthoud, “Theorie de la Formation des Faces d’un Crystal,” Journal of Chemical Physics, Vol. 10, 1912, p. 624.
[14] B. Suboti? and J. Broni?, “Theoretical and Practical As-pects of Zeolite Crystal Growth,” In: S. M. Auerbach, K. A. Carrado, P. Dutta, Eds., Handbook of Zeolite Science and Technology, K. Marcel Dekker Inc. New York, 2003, pp. 129-203.
[15] J. J. P. Valeton, “Wachstun and Auflosung der Kristalle,” Z. Kristallogr, Vol. 59, No. 1923, pp. 135-169.
[16] J. A. W. Elliott and C. A. Ward, “Temperature Pro-grammed Desorption: A Statistical Rate Theory Ap-proach,” Journal of Chemical Physics, Vol. 106, No. 13, 1997, pp. 5677-5685. doi:10.1063/1.473588
[17] J. A. W. Elliott and C. A. Ward, “Chemical Potential of Adsorbed Molecules from a Quantum Statistical Formu-lation?,” American Chemical Society, Vol. 13, No. 5, 1997, pp. 951-960. doi:10.1021/la951019w
[18] R. P. Townsend, “Ion Exchange in Zeolites-Basic Prin-ciples,” Chemistry and Industry, Vol. 2, No. 7, 1984, pp. 246-251.
[19] C. A. Ward, “The Rate of Gas Absorption at a Liquid Interface,” Journal of Chemical Physics, Vol. 67, No. 1, 1977, pp. 229-233. doi:10.1063/1.434547
[20] C. A. Ward. M. Rizk and A. S. Tucker, “Statistical Rate Theory of Interfacial Transport. II. Rate of Isothermal Bubble Evolution in a Liquid-Gas Solution,” Journal of Chemical Physics, Vol. 76, No. 11, 1983, pp. 5606-5615. doi:10.1063/1.442866
[21] J. Crank, “The Mathematics of Diffusion,” Oxford Uni-versity Press, Oxford, 1956.
[22] M. R. Maxey and J. J. Riley, “Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow,” Physics of Fluids, Vol. 26, No. 4, 1983, pp. 883-890. doi:10.1063/1.864230

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.