[1]
|
N. Uddin, “Analysis and Design of GaN Based Doherty Power Amplifier for Wireless Power Application,” Master’s Thesis Report, University of Kassel, Kassel, 2007.
|
[2]
|
H. Panesar, “High-Efficiency Switched-Mode Power Amplifier Using Gallium Nitride on Silicon HEMT Technology,” Master’s Thesis Report, Carleton Univer- sity, Ottawa, 2007.
|
[3]
|
J. Noonan, “The Design of a High Efficiency RF Power Amplifier for an MCM Process,” Master’s Thesis Report, Massachusetts Institute of Technology, Cambridge, 2005.
|
[4]
|
M. Venkataramani, “Efficiency Improvement of WCD- MA Base Station Transmitters using Class-F Power Amplifiers,” Master’s Thesis Report, The University of Virginia, Blacksburg, 2004.
|
[5]
|
F. H. Raab, “Class-F Power Amplifiers with Maximally Flat Waveforms,” IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 11, 1997, pp. 2007-2012. doi:10.1109/22.644215
|
[6]
|
M. Wren and T. J. Brazil, “Experimental Class-F Power Amplifier Design Using Computationally Efficient and Accurate Large-Signal pHEMT Model,” IEEE Transac- tions on Microwave Theory and Techniques, Vol. 53, No. 5, May 2005, pp. 1723-1731.
doi:10.1109/TMTT.2005.847108
|
[7]
|
S. Gao, P. Butterworth, S. Ooi and A. Sambell, “High-Efficiency Power Amplifier Design Including Input Harmonic Termination,” IEEE Microwave and Wireless Component Letters, Vol. 16, February 2005, pp. 81-83.
|
[8]
|
J. Sun, B. Li and Y. W. M. Chia, “A Novel CDMA Power Amplifier for High Efficiency and Linearity,” IEEE Proceedings of Vehicular Technology Conference, Shenzhen, 1990, pp. 2044-2047.
|
[9]
|
I. Lin, M. Devincentis, C. Caloz and T. Itoh, “Arbitrary Dual-Band Components Using Composite Right/Left- Handed Transmission lines,” IEEE Transactions on Microwave Theory and Techniques, Vol. 53, April 2005, pp. 1142-1149.
|
[10]
|
Y. Sub Lee, M. Woo Lee and Y. Ha Jeong, “High-Efficiency Class-F GaN HEMT Amplifier with Simple Parasitic-Compensation Circuit,” IEEE Microwave and Wireless Components Letters, Vol. 18, January 2008, pp. 55-57.
|