PCRR Based Bandpass Filter for C and L+U Bands of ITU-T G.694.2 CWDM Systems
S. Robinson, R. Nakkeeran
DOI: 10.4236/opj.2011.13024   PDF    HTML     6,981 Downloads   13,394 Views   Citations

Abstract

A two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based Bandpass Filter (BPF) is designed to cover C and L+U bands of Coarse Wavelength Division Multiplexing (CWDM) systems. It is devised with two quasi waveguides and a circular PCRR. The simulation results are obtained using 2D Finite Difference Time Domain (FDTD) method. The Photonic Band Gap (PBG) is calculated by Plane Wave Expansion (PWE) method. The BPFs allow the entire C-band (BPF1) and L+U bands (BPF2), which are extended from 1530 to 1565 nm (C band) and 1565 to 1675 nm (L+U bands). The computed bandwidth of BPF1 and BPF2 is 32 nm and 97 nm respectively. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the BPF1 is around 12.8 µm × 11.4 µm and 11.4 µm × 11.4 µm for BPF2.

Share and Cite:

Robinson, S. and Nakkeeran, R. (2011) PCRR Based Bandpass Filter for C and L+U Bands of ITU-T G.694.2 CWDM Systems. Optics and Photonics Journal, 1, 142-149. doi: 10.4236/opj.2011.13024.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. Yablonovitch., “Inhibited Spontaneous Emission on Solid-State Physics and Electronics,” Physical Review Letters, Vol. 58, No. 20, 1987, pp. 2059-2062. doi: 10.1103/PhysRevLett.58.2059
[2] S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Physical Review Letters, Vol. 58, No. 23, 1987, pp. 2486-2489. doi: 10.1103/PhysRevLett.58.2486
[3] J. D. Joannopoulos, R. D. Meade and J. N. Winn, “Photonic Crystal: Modeling of Flow of Light,” Princeton University Press, Princeton, 2005.
[4] J. D. Joannopoulos, P. R. Villeneuve and S. Fan, “Photonic Crystals: Putting a New Twist of Light,” Nature, Vol. 386, 1997, pp. 143-149. doi: 10.1364/JOSAB.17.001027
[5] Z. Qiang, W. Zhou and Richard A. Soref, “Optical Add-Drop Filters Based on Photonic Crystal Ring Resonators,” Optics Express, Vol. 15, No. 4, 2007, pp. 1823- 1831. doi: 10.1364/OE.15.001823
[6] S. Robinson and R. Nakkeeran, “Photonic Crystal Ring Resonator Based Add-Drop Filter Using Hexagonal Rods for CWDM Systems,” Springer Optoelectronics Letters, Vol. 7, No. 3, 2011, pp. 164-166. doi: 10.1007/s11801-011-0172-2
[7] A. Ghaffari, F. Monifi, M. Djavid and M. S. Abrishamian, “Analysis of Photonic Crystal Power Splitters with Different Configurations,” Journal of Applied Science, Vol. 8, No. 8, 2008, pp. 1416-1425. doi:10.3923/jas.2008.1416.1425
[8] N. Nozhat and N. Granpayeh, “Analysis and Simulation of a Photonic Crystal Power Divider”, Journal of Applied Science, Vol. 7, No. 22, 2007, pp. 3576-3579. doi:10.3923/jas.2007.3576.3579
[9] M. David, A. Ghaffari, F. Monifi and M. S. Abrishamian, “T-Shaped Channel Drop Filters Using Photonic Crystal Ring Resonators,” Physica E, Vol. 40, No. 10, 2008, pp. 3151- 3154. doi:10.1016/j.physe.2008.05.002
[10] C.-C. Wang and L.-W. Chen, “Channel Drop Filters with Folded Directional Couplers in Two-Dimensional Photonic Crystals,” Physica B, Vol. 405, No. 4, 2010, pp. 1210- 1215. doi:10.1016/j.physb.2009.11.044
[11] K. H. Hwang and G. H. Song, “Design of a High-Q Channel-Drop Multiplexer Based on the Two-Dimen- sional Photonic-Crystal Membrane Structure”, Optics Express, Vol. 13, 2005, pp. 1948-1957. doi:10.1364/OPEX.13.001948
[12] G. Manzacca, D. Paciotti, A. Marchese, M. S. Moreolo and G. Cincotti, “2D Photonic Crystal Cavity-Based WDM Multiplexer,” Photonics and Nanostructures-Funda- mentals and Applications, Vol. 5, No. 4, 2007, pp. 164- 170. doi:10.1016/j.photonics.2007.03.003
[13] A. Ghaffari, F. Monifi, M. Djavid and M. S. Abrishamian, “Heterostructure Wavelength Division Demultiplexers Using Photonic Crystal Ring Resonators,” Optics Communications, Vol. 281, No. 15-16, 2008, pp. 4028-4032. doi:10.1016/j.optcom.2008.04.045
[14] T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney and M. Mansuripur, “Design of a Compact Photonic-Crystal Based Polarizing Beam Splitter,” IEEE Photonics Technology Letters, Vol. 17, No. 7, 2005, pp. 1435-1437. doi: 10.1109/LPT.2005.848278
[15] V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdre, M. V. Kotlyar, L. O’Faolain and T.F. Krauss, “Self-Colli- Mating Photonic Crystal Polarization Beam Splitter,” Optics Letters, Vol. 32, No. 5, 2007, pp. 530-532. doi:10.1364/OL.32.000530
[16] D. S. Park, O. Beom-Hoan, S. G. Park, E. H. Lee, and S. G. Lee, “Photonic Crystal-Based GE-PON Triplexer Using Point Defects,” Proceedings of SPIE, Vol. 6897, 2008, pp. 689711-12. doi: 10.1117/12.762186
[17] T.-T. shih, Y.-D. Wu and J.-J. Lee, “Proposal for Compact Optical Triplexer Filter Using 2-D Photonic Crystals,” IEEE Photonics Technology Letters, Vol. 21, No. 1, 2009, pp. 18-21. doi: 10.1109/LPT.2008.2008101
[18] Q. Wang, Y. P. Cui, H. Y. Zhang, C. C. Yan and L. L. Zhang, “The Position Independence of Heterostructure Coupled Waveguides in Photonic-Crystal Switch,” Optik Optics, Vol. 121, No. 8, 2010, pp. 684-688. doi:10.1016/j.ijleo.2008.10.010
[19] M. K. Moghaddam, A. R. Attari and M. M. Mirsalehi, “Improved Photonic Crystal Directional Coupler with Short Length,” Photonics and Nanostructures-Funda- mentals and Applications, Vol. 8, No. 1, 2010, pp. 47-53. doi:10.1016/j.photonics.2010.01.004
[20] F. Monifi, M. Djavid, A. Ghaffari and M. S. Abrishamian, “A New Bandstop Filter Based on Photonic Crystals,” Proceedings of PIER, Cambridge, 2008, pp. 1-4. ISSN: 1559- 9450
[21] S. Robinson and R. Nakkeeran, “Photonic Crystal Based Bandstop Filter for Photonic Integrated Circuits,” International Journal on Information and Communication Technologies (IJICT), Vol. 4, No. 1-2, 2011, pp. 49-54.
[22] C. Chao, X. Li, H. Li, K. Xu, J. Wu and J. Lin, “Bandpass Filters Based on Phase-Shifted Photonic Crystal Waveguide Gratings,” Optics Express, Vol. 15, No. 18, 2007, pp. 11278-11284. doi:10.1364/OE.15.011278
[23] R. Costa, A. Melloni and M. Martinelli, “Band-Pass Resonant Filters in Photonic Crystal Waveguides,” IEEE Photonics Technology Letters, Vol. 15, No. 3, 2003, pp. 401-403. doi: 10.1109/LPT.2002.807953
[24] M. Djavid, A. Ghaffari, F. Monifi and M. S. Abrishamian, “Photonic Crystal Narrow Band Filters Using Biperiodic Structures,” Journal of Applied Science, Vol. 8, No. 10, 2008, pp. 1891-1897. doi: 10.3923/jas.2008.1891.1897
[25] L. Wei, T. T. Alkeskjold and A. Bjarklev, “Electrically Tunable Bandpass Filter on Liquid Crystal Photonic bandgap fibers,” Conference on OFC/NFOEC, Alaska, 21-26 March 2010, pp. 1-3. doi:10.1364/OL.35.001608
[26] S. Robinson and R. Nakkeeran, “A Bandpass Filter Based on 2D Circular Photonic Crystal Ring Resonator,” Proceedings of the 7th IEEE International Conference on WOCN’10, Colombo, 6-8 September 2010, pp. 1-4. doi: 10.1109/WOCN.2010.5587343
[27] S. Robinson and R. Nakkeeran, “Photonic Crystal Ring Resonator Based Bandpass Filter,” Proceedings of IEEE ICCCCT-10, Pondicherry, 7-9 October 2010, pp. 83-85. doi: 10.1109/ICCCCT.2010.5670531
[28] J. B. Pendry and A. MacKinnon, “Calculation of Photon Dispersion Relation,” Physical Review Letters, Vol. 69, 1992, pp. 2772-2775. doi:10.1103/PhysRevLett.69.2772
[29] J. B. Pendry, “Calculating Photonic Band Structure,” Journal of Physics: Condensed Matter, Vol. 8, No. 9, 1996, pp. 1085-1108. doi: 10.1088/0953-8984/8/9/003
[30] G. Pelosi, R. Coccioli and S. Selleri, “Quick Finite Elements for Electromagnetic waves,” Artech House, Boston, London, 1997. ISBN: 1596933453
[31] A. Taflove, “Computational Electrodynamics:The Finite- Difference Time-Domain Method,” Artech House, Boston, London, 2005. ISBN: 978-1-58053-832-9
[32] S. G. Johnson and Joannopoulos, “Block-Iterative Frequency Domain Methods for Maxwell’s Equation in a Plane Wave Basis,” Optics Express, Vol. 8, No. 3, 2000, pp. 173-190. doi:10.1364/OE.8.000173
[33] S. Guo and S. Alloin, “Simple Plane Wave Implementation for Photonic Crystal Calculation,” Optics Express, Vol. 11, No. 2, 2003, pp. 167-175. doi:10.1364/OE.11.000167
[34] K. Sakoda, “Optical Properties of Photonic Crystals,” Springer-Verlag, Berlin Heidelberg, New York, 2004. ISBN: 3-540-20682-5
[35] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equation in Isotropic Media,” IEEE Transactions on Antenna Propagation, Vol. 14, No. 3, 1996, pp. 302-307. doi: 10.1109/TAP.1966.1138693
[36] A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpoth, M. Kristensen, T. Niemi and H. M. H. Chong, “Comprehensive FDTD Modeling of Photonic Crystal Waveguide Components,” Optics Express, Vol. 12, No. 2, 2004, pp. 234-248. doi:10.1364/OPEX.12.000234

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.