Removal of Phenol from Aqueous Solution by Activated Mud
Zohra Dali-Youcef, Michèle Queneudec
DOI: 10.4236/jeas.2011.13006   PDF    HTML     4,604 Downloads   10,150 Views   Citations


Activated mud has been employed to remove phenolic compounds, a common contaminant in wastewaters. Because of high surface area per unit area, activated mud is the most effective adsorbent and exhibits high capacity of adsorption of phenolic compounds. A complete study was undertaken on the adsorption of phenol starting from an aqueous solution on activated mud with ammonium chloride. The removal is found to be dependent on concentration of phenol and increasing of concentrations favour the uptake. The isotherms and kinetics of adsorption of phenol on activated mud were studied at 20oC. Equilibrium isotherm of phenol on activated mud is obtained and the results shows that the Langmuir model provided the best fit for the adsorption data. From the experimental results obtained, the adsorption process can be well described with the pseudo-second order model.

Share and Cite:

Dali-Youcef, Z. and Queneudec, M. (2011) Removal of Phenol from Aqueous Solution by Activated Mud. Journal of Encapsulation and Adsorption Sciences, 1, 35-42. doi: 10.4236/jeas.2011.13006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] ATSDR, “Toxicological Profiles for Phenol,” Agency for Toxic Substances and Disease Registry, Atlanta, 1989.
[2] M. S. Fountoulakis, S. N. Dokianakis and M. E. Kornaros, “Removal of Phenolics in Olive Wastewaters Using the White-Rot Fungus Pleurotus Ostreatus,” Water Research, Vol. 36, 2002, pp. 4735-4744. doi:10.1016/S0043-1354(02)00184-7
[3] S. Yun-Hwei, “Phenol Sorption by Organoclays Having Different Charge Characteristics,” Colloids and Surfaces, Vol. 232, pp. 143-149.
[4] L. Gianfreda and F. Sannino, “Oxidative Transformation of Phenols in Aqueous Mixtures,” Water Research, Vol. 37, 2003, pp. 3205-3215. doi:10.1016/S0043-1354(03)00154-4
[5] O. Ferrandon, G. Mas, and M. T. Moss, “Utilisation des Argiles en Dépollution des Eaux,” Tribune de l’eau, Vol. 51, 1998, pp. 25-34.
[6] S. Peker, S. Yapar and N. Besun, “Physicochemical and Engineering Aspects,” Colloids and Surfaces A, Vol. 104, 1995, pp. 249-257. doi:10.1016/0927-7757(95)03280-8
[7] T. Viraraghavan and A. Kapoor, “Adsorption of Mercury from Wastewater by Bentonite,” Applied Clay Science, Vol. 9, 1994, pp. 31-49. doi:10.1016/0169-1317(94)90013-2
[8] C. A. P Almeida, N. A. Debacher, A. J. Downsc, L. Cotteta and C. A. D. Mello, “Adsorption Behaviour of a Cationic Surfactant on Montmorillonite,” Journal of Colloid and Interface Science, Vol. 332, 2009, pp. 46-53. doi:10.1016/S0169-1317(01)00032-1
[9] W. Zhijian, A. Ik-Sung, L. Chang-Ha, K. Jung-Hyun, G. S. Yong and L. Kangtaek, “Enhancing the Organic Dye Adsorption on Porous Xerogels,” Colloids and Surfaces, Vol. 240, pp. 157-164.
[10] A Nennemann., S. Kulbach and G. Lagaly, “Entrapping Pesticides by Coagulating Smectites,” Applied Clay Science, Vol. 18, 2001, pp. 265-275. doi:10.1016/S0169-1317(01)00032-1
[11] C. Volzone and L. B. Garrido, “The Effect of Some Physicochemical and Mineralogical Properties on the Na2CO3 Activation of Argentine Bentonites,” Applied Clay Science, Vol. 6, 1991, pp. 143-154. doi:10.1016/S0169-1317(01)00032-1
[12] A. Boukeroui and M. S. Ouali, “Activation D’une bentonite Par un Sel D’ammonium: Evolution de la Capacité D’échange et de la Surface Spécifique,” Annales de Chimie Science des Matériaux, Vol. 25, 2000, pp. 583-590.
[13] R. Mokaya, W. Jones, M. E. Davies and M. E. Whittle “Preparation of Alumina-Pillared Acid-Activated Clays and Their Use as Chlorophyll Adsorbents,” Journal of Materials Chemistry, Vol. 4, 1993, pp. 381-387. doi:10.1016/S0169-1317(01)00032-1
[14] K. Nakagawa, SR. Muka?, T. Suzuki and H. Tamon, “Gas adsorption on Activated Carbons from Mixtures of PET With Metal Salt,” Carbon, Vol. 41, 2003, pp. 157-164. doi:10.1016/S0169-1317(01)00032-1
[15] P. E. Gonzalez and S. E. Villafranca, “Evolution of Surface Properties in a Bentonite as a Function of Acid and Heat Treatment,” Journal of Chemical Technology and Biotechnology, Vol. 52, 1991, pp. 211-218. doi:10.1016/S0169-1317(01)00032-1
[16] E. Erde, N. Karapinar and R. J. Donat, Journal of Colloid Interface Science, Vol. 280, 2004, pp. 309-314. doi:10.1016/S0169-1317(01)00032-1
[17] G. Ozdemir and S. Yapar, “Adsorption and Desorption Behavior of Copper Ions on Namontmorillonite: Effect of Rhamnolipids and PH,” journal of Hazardous Materials, Vol. 166, 2009, pp. 1307-1313.
[18] F. Bergaya, B. K. G. Theng and G. Lagaly, “General Introduction,” Clay Minerals, and Clay Science, chap.1. In: (Eds.) Handbook of Clay Science. Development of Clay Science 1, Amsterdam, 2006, pp. 1-18.
[19] S. Guggenheim, “Summary of Recommendations of Nomenclature Committees Relevant to Clay Mineralogy,” Report of the International Association for the Study of Clays (AIPEA) Nomenclature Committee, Clays and Clay Minerals, Vol.54, No. 6, 2006, pp. 761-772. doi:10.1016/S0169-1317(01)00032-1
[20] E. Srasra and M. Trabelsi-Ayedi, “Textural Properties of Acid Activated Glauconite,” Applied Clay Science, Vol.17, 2000, pp. 71-84. doi:10.1016/S0169-1317(01)00032-1
[21] M. F. Brigatti, A. Laurora, D. Malferrari, L. Medici and L. Poppi, “Adsorption of [Al (Urea)6]3+ and [Cr(Urea)6]3+ Complexes in Vermiculite Interlayer,” Applied Clay Science, Vol. 30, 2005, pp. 21-32. doi:10.1016/S0169-1317(01)00032-1
[22] S. Caillère and S. Hénin, “Minéralogie des Argiles,” Masson, Paris, 1963, pp. 211-225.
[23] S. Petit, D. Righi, J. Madejova and A. Decarreau, “Interpretation of the Infrared NH4+ Spectrum of the NH4+-Clays: Application to the Evaluation of the Layer Charge,” Clay Minerals, Vol. 34, 1999, pp. 543-549. doi:10.1016/S0169-1317(01)00032-1
[24] J. P. Coates, “A Practical Approach to the Interpretation of Infrared Spectra,” Ed. R.A. Meyers, Encyclopedia of Analytical Chemistry, Vol. 12, John Wiley and Sons Ltd, Chichester, UK, 2000, pp. 10815-10837.
[25] E. Joussein, S. Petit and A. Decarreau, “Une Nouvelle Méthode de Dosage des Minéraux Argileux en Mélange Par Spectroscopie IR,” Comptes Rendus de l'Académie des Sciences, Sciences de la Terre et des Planètes, Paris, Vol. 332, pp. 83-89.
[26] F. C. Wu, R. L. Tseng and R. S. Juang, “Preparation of Highly Microporous Carbons from Fir wood by KOH Activation for Adsorption of Dyes and Phenols from Water,” Separation and Purification Technology, Vol. 47, 2005, pp. 10-19. doi:10.1016/S0169-1317(01)00032-1
[27] N. Rajic, D. Stojakovic, M. Jovanovic and N. Zabukovec Logar, “Removal of Nickel(II) Ions from Aqueous Solutions Using the Natural Clinoptilolite and Preparation of Nano-Nio on the Exhausted Clinoptilolite,” Applied Surface Science, Vol. 257, 2010, pp. 1524-1532. doi:10.1016/S0169-1317(01)00032-1
[28] C. Lu, C. Liu and Su, F, “Sorption kinetics, Thermodynamics and Competition of Ni2+ from Aqueous Solutions onto Surface Oxidized Carbon Nanotubes,” Desalination, Vol. 249, 2009, pp. 18-23. doi:10.1016/S0169-1317(01)00032-1

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.