Conventional versus minimally-invasive cervical discectomy for treatment of severe degenerative disease at C5-C6: a biomechanical comparison using a model of the full cervical spine and finite element analysis
Yuan Li, Gladius Lewis
DOI: 10.4236/jbise.2011.49076   PDF    HTML     5,218 Downloads   8,949 Views   Citations


The purpose of this study was to determine the dif-ferences in biomechanical responses of tissues in the cervical spine when pain and other problems secon-dary to severe disc degeneration disease are surgi-cally treated by conventional discectomy (CONDIS) compared to minimally-invasive discectomy (MIVDIS). A validated three-dimensional model of an intact, healthy, adult full cervical spine (C1-C7) (INT) was constructed. This model was then modified to create two models, one simulating each of the above-men-tioned two techniques for discectomy of the severely degenerated C5-C6 disc. For each of these three models, we used the finite element analysis method to obtain three biomechanical parameters at various tissues in the model, under seven different physio-logically relevant loadings. For each of the biome-chanical parameters, the results were expressed as relative change in its value when a specified combi-nation of simulated discectomy model and applied loading was used, with respect to the corresponding value in the intact model. We then computed the value of a composite biomechanical performance in-dex (CBPI) for CONDIS and MIVDIS models, with this value incorporating all of the aforementioned relative changes. We found that CBPI was marginally lower for MIVDIS model. This trend is the same as that reported for the relative complications rate and outcome measures following conventional and mini-mally-invasive discectomies in the lumbar spine. From a healthcare perspective, one implication of our finding is that minimally-invasive cervical discectomy should be considered an attractive option provided that detailed patient selection criteria are clearly de-fined and strictly followed.

Share and Cite:

Li, Y. and Lewis, G. (2011) Conventional versus minimally-invasive cervical discectomy for treatment of severe degenerative disease at C5-C6: a biomechanical comparison using a model of the full cervical spine and finite element analysis. Journal of Biomedical Science and Engineering, 4, 599-608. doi: 10.4236/jbise.2011.49076.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Hauerberg, J., Kosteljanetz, M., B?ge-Rasmussen, T., Dons, K., Gideon, P., Springborg, J.B., and Wagner, A. (2008) Anterior cervical discectomy with or without fusion with Ray titanium cage: A prospective randomized clinical study. Spine, 33, 458-464. doi:10.1097/BRS.0b013e3181657dac
[2] Anderson, P.A., Subach, B.R., and Riew, K.D. (2009) Predictors of outcome after anterior cervical discectomy and fusion: a multivariate analysis. Spine, 34, 161-166. doi:10.1097/BRS.0b013e31819286ea
[3] Nandoe-Tiwari, R.D.S., Bartels, R.H.M.A., and Peul, W.C. (2006) Long-term outcomes after anterior cervical discectomy without fusion. European Spine Journal, 16, 1411-1416. doi:10.1007/s00586-007-0309-y
[4] Rao, R.J., Christie, J.G., Ghahreman, A., Cartwright, C.A. and Ferch, R.D. (2008) Clinical and functional outcomes of anterior cervical discectomy without fusion. Journal of Clinical Neuroscience, 15, 1354-1359. doi:10.1016/j.jocn.2007.12.009
[5] Chiu, J.C., Clifford, T.J., Greenspan, M., Richley, R.C., Lohman, G. and Sison, R.B. (2007) Percutaneous microdecompressive endoscopic cervical discectomy with laser thermodiskoplasty. Mount Sinai Journal of Medicine, 67, 278-282.
[6] Ahn, Y., Lee, S.H., Lee, S.C., Shin, S.W. and Chung, S.E. (2004) Factors predicting excellent outcome of percutaneous cervical discectomy: Analysis of 111 consecutive cases. Neuroradiology, 46, 378-384. doi:10.1007/s00234-004-1197-z
[7] Aydin, Y., Kaya, A., Can, S.M., Turkmenoglu, O., Cavusoglu, H., and Ziyal, I.M. (2005) Minimally invasive anterior contralateral approach for the treatment of cervical disc herniation. Surgical Neurology, 63, 210-219. doi:10.1016/j.surneu.2004.07.001
[8] Lee, S-H., J.H.M., Choi, W.-C., Jung, B. and Mehta, R. (2007) Anterior minimally invasive approaches for the cervical spine. Orthopaedic Clinics of North America, 38, 327-337. doi:10.1016/j.ocl.2007.02.007
[9] Ahn, Y., Lee, S.H. and Shin, S.W. (2005) Percutaneous endoscopic cervical discectomy: clinical outcome and radiographic changes. Photomedicine and Laser Surgery, 23, 362-368. doi:10.1089/pho.2005.23.362
[10] Kotilainen, E. (1999) Percutaneous nucleotomy in the treatment of cervical disc herniation: report of three cases and a review. Minimally Invasive Neurosurgery, 42, 152-155. doi:10.1055/s-2008-1053389
[11] Bertagnoli, R. (2008) Single level ProDisc?-C total disc replacement up to four years follow-up. The Spine Journal, 8, 75S. doi:10.1016/j.spinee.2008.06.177
[12] Phillips, F.M., Allen, T.R., Regan, J.J., Albert, T.J., Cappuccino, A., Devine, J.G., Ahrens, J.E., Hipp, J.A. and McAfee, P.C. (2009) Cervical disc replacement in patients with and without previous adjacent level fusion surgery: A prospective study. Spine, 34, 556-565. doi:10.1097/BRS.0b013e31819b061c
[13] Xu, J.-X., Zhang, Y.-Z., Shen, Y., and Ding, W.-Y. (2009) Effect of modified techniques in Bryan cervical disc arthroplasty. Spine, 34, 1012-1017. doi:10.1097/BRS.0b013e31819c4a5b
[14] Donkersloot, P. (2009) Nucleus replacement with the DASCOR? disc arthroplasty system: two-year follow-up results of the European multicenter clinical studies. Surgical Neurology, 71, 140-141. doi:10.1016/j.surneu.2008.10.033
[15] Ruan, D., He, Q., Ding, Y., Hou, L., Li, J. and Luk, K.D.K. (2007) Intervertebral disc transplantation in the treatment of degenerative spine disease: a preliminary study. Lancet, 369, 993-999. doi:10.1016/S0140-6736(07)60496-6
[16] Oppenheimer, J.H., DeCastro, I. and McDonnell, D.E. (2009) Minimally invasive spine technology and minimally invasive spine surgery: A historical review. Neurosurgery Focus, 27, 1-15.
[17] Rho, R.Y. (2000) Ultrasonic methods for evaluating mechanical properties of bone. In: An, Y.H. and Draughn, R.A., Eds. Mechanical Testing of Bone and Bone-Implant Interface, CRC Press, Boca Raton.
[18] Cowin, S.C. (2001) Bone Mechanics Handbook. 2nd Edition, CRC Press, Boca Raton.
[19] Ulrich, D., Rietbergen, B., Laib, A. and Ruegsegger, P. (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone, 25, 55-60. doi:10.1016/S8756-3282(99)00098-8
[20] Kumaresan, S., Yoganandan, N. and Pintar, F.A. (1997) Finite element analysis of anterior cervical spine interbody fusion. Bio-Medical Materials and Engineering, 7, 221-230.
[21] Ha, S.K. (2006) Finite element modeling of multi-level cervical spinal segments (C3-C6) and biomechanical analysis of an elastomer-type prosthetic disc. Medical Engineering & Physics, 28, 534-541. doi:10.1016/j.medengphy.2005.09.006
[22] Brolin, K. and Halldin, P. (2004) Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics. Spine, 29, 376-385. doi:10.1097/01.BRS.0000090820.99182.2D
[23] Yoganandan, N., Kumaresan, S.C, Voo, L., Pintar, F.A,, and Larson, S.J. (1996) Finite element modeling of the C4-C6 cervical spine unit. Medical Engineering & Physics, 16, 569-574. doi:10.1016/1350-4533(96)00013-6
[24] Zhang, Q.H., Teo, E.C., Ng, H.W. and Lee, V.S. (2006) Finite element analysis of moment-rotation relationships for human cervical spine. Journal of Biomechanics, 39, 189-193. doi:10.1016/j.jbiomech.2004.10.029
[25] Li, Y. and Lewis, G. (2010) Influence of surgical treatment for disc degeneration disease at C5-C6 on changes in some biomechanical parameters of the cervical spine. Medical Engineering & Physics, 32, 595-603. doi:10.1016/j.medengphy.2010.02.009
[26] Panjabi, M.M., Crisco, J.J., Vasavada, A., Oda, T., Cholewicki, J., Nibu, K. and Shin, E. (2001) Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine, 26, 2692-2700. doi:10.1097/00007632-200112150-00012
[27] Wheeldon, J.A., Pintar, F.A., Knowles, S. and Yoganandan, N. (2006) Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine. Journal of Biomechanics, 39, 375-380. doi:10.1016/j.jbiomech.2004.11.014
[28] Mehalic, T.F., Pezzuti, R.T. and Applebaum, B.I. (1990) Magnetic resonance imaging and cervical spondylotic myelography. Neurosurgery, 26, 217-227. doi:10.1227/00006123-199002000-00006
[29] Kumaresan, S., Yoganandan, N., Pintar, F.A., Maiman, D.J., and Goel, V.K. (2001) Contribution of disc degeneration to osteophyte formation in the cervical spine: A biomechanical investigation. Journal of Orthopaedic Research, 19, 977-984. doi:10.1016/S0736-0266(01)00010-9
[30] Kumaresan, S., Yogananadan, N., Pintar, F.A. and Maiman, D.J. (1999) Finite element modeling of the cervical spine: Role of intervertebral disc under axial and eccentric loads. Medical Engineering & Physics, 21, 689-700. doi:10.1016/S1350-4533(00)00002-3
[31] Galbusera, F., Fantigrossi, A., Raimondi, M.T., Sassi, M., Fornari, M. and Assietti, R. (2006) Biomechanics of the C5-C6 spinal unit before and after placement of a disc prosthesis. Biomechanics and Modeling in Mechanobiology, 5, 253-261. doi:10.1007/s10237-006-0015-4
[32] Tchako, A. and Sadegh, A. (2009) Stress changes in intervertebral discs of the cervical spine due to partial discectomies and fusion. Journal of Biomechanical Engineering, 131, 1-11. doi:10.1115/1.3118763
[33] Rohlmann, A., Graichen, F., Bender, A., Kayser, R. and Bergmann, G. (2008) Loads on a telemetrized vertebral body replacement measured in three patients within the first operative month. Clinical Biomechanics, 23, 147- 158. doi:10.1016/j.clinbiomech.2007.09.011
[34] O’Toole, J.E., Eichholz, K.M. and Fessler, R.G. (2009) Surgical site infection rates after minimally invasive spinal surgery. Journal of Neurosurgery: Spine, 11, 471-476. doi:10.3171/2009.5.SPINE08633
[35] Franke, J., Greiner-Perth, R., Boehm, H., Mahfeld, K., Grasshoff, H., Allam, Y. and Awiszus, F. (2009) Comparison of a minimally invasive procedure versus standard microscopic discectomy: A prospective controlled clinical trial. European Spine Journal, 18, 992-1000. doi:10.1007/s00586-009-0964-2
[36] Porchet, F., Bartanusz, V., Kleinstueck, F.S., Lattig, F., Jeszenszky, D., Grob D. and Mannion, A.F. (2009) Microdiscectomy compared with standard discectomy: an old problem revisited with new outcome measures within the framework of a spine surgical registry. European Spine Journal, 18, S360-S366. doi:10.1007/s00586-009-0917-9
[37] Veresciagina, K., Spakauskus, B. and Ambrozaitis, K.V. (2010) Clinical outcomes of patients with lumbar disc herniation, selected for one-level open-discectomy and micodiscectomy. European Spine Journal, 19, 1450-1458. doi:10.1007/s00586-010-1431-9
[38] Rohlmann, A., Zander, T., Schmidt, H., Wilke, H.-J. and Bergmann. G. (2006) Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. Journal of Biomechanics, 39, 2484-2490. doi:10.1016/j.jbiomech.2005.07.026
[39] Schmidt, H., Kettler, A., Rohlmann, A., Claes, L. and Wilke, H.-J. (2007) The risk of disc prolapses with complex loading in different degrees of disc degeneration- a finite element analysis. Clinical Biomechanics, 22, 988- 998. doi:10.1016/j.clinbiomech.2007.07.008
[40] Schmidt, H., Heuer, F. and Wilke, H.-J. (2009) Dependency of disc degeneration on shear and tensile strains between annular fiber layers for complex loads. Medical Engineering & Physics, 31, 642-649. doi:10.1016/j.medengphy.2008.12.004
[41] Tchako, A. and Sadegh, A. (2009) Stress changes in intervertebral discs of the cervical spine due to partial discectomies and fusion. Journal of Biomechanical Engineering, 131, 051013-1-051013-11. doi:10.1115/1.3118763
[42] Li, Y. and Lewis, G. (2010) Influence of the constitutive material behavior model assigned to the annulus fibrosus and the nucleus pulposus on the biomechanical performance of a model of the cervical spine: A finite element analysis study. Journal of Mechanics in Medicine and Biology, 10, 151-166. doi:10.1142/S0219519410003216
[43] Natarajan, R.N., Chen, B.H., An, H.S. and Andersson, G.B.J. (2000) Anterior cervical fusion: a finite element model study on motion segment stability including the effect of osteoporosis. Spine, 25, 955-961. doi:10.1097/00007632-200004150-00010
[44] Jones, A.C. and Wilcox, R.K. (2008) Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis. Medical Engineering & Physics, 30, 1287-1304. doi:10.1016/j.medengphy.2008.09.006
[45] Schmidt, H., Heuer, F., Claes, L. and Wilke, H.J. (2008) The relation between instantaneous center of rotation and facet joint forces:A finite element analysis. Clinical Biomechanics, 23, 270-278. doi:10.1016/j.clinbiomech.2007.10.001
[46] Watanabe, A., Benneker, L.M., Boesch, C., Watanabe, T., Obata T. and Anderson S.E. (2007) Classification of intervertebral disk degeneration with axial T2 mapping. American Journal of Roentgenology, 189, 936-942. doi:10.2214/AJR.07.2142

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.