Bound States of the Klein-Gordon for Exponential-Type Potentials in D-Dimensions
Sameer M. Ikhdair
DOI: 10.4236/jqis.2011.12011   PDF    HTML     5,330 Downloads   11,829 Views   Citations

Abstract

The approximate analytic bound state solutions of the Klein-Gordon equation with equal scalar and vector exponential-type potentials including the centrifugal potential term are obtained for any arbitrary orbital quantum number l and dimensional space D. The relativistic/non-relativistic energy spectrum formula and the corresponding un-normalized radial wave functions, expressed in terms of the Jacobi polynomials and or the generalized hypergeometric functions have been obtained. A short-cut of the Nikiforov-Uvarov (NU) method is used in the solution. A unified treatment of the Eckart, Rosen-Morse, Hulthén and Woods-Saxon potential models can be easily derived from our general solution. The present calculations are found to be identical with those ones appearing in the literature. Further, based on the PT-symmetry, the bound state solutions of the trigonometric Rosen-Morse potential can be easily obtained.

Share and Cite:

S. Ikhdair, "Bound States of the Klein-Gordon for Exponential-Type Potentials in D-Dimensions," Journal of Quantum Information Science, Vol. 1 No. 2, 2011, pp. 73-86. doi: 10.4236/jqis.2011.12011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. I. Schiff, “Quantum Mechanics,” 3rd Edition, McGraw-Hill, New York, 1955.
[2] L. D. Landau and E. M. Lifshitz, “Quantum Mechanics, Non-Relativistic Theory,” 3rd. Edition, Pergamon, Oxford, 1977.
[3] C. L. Pekeris, “The Rota-tion-Vibration Coupling in Diatomic Molecules,” Physical Review, Vol. 45, 1934, pp. 98-103. doi:10.1103/PhysRev.45.98
[4] O. Bayrak and I. Boztosun, “Arbitrary -State Solutions of the Rotating Morse Potential by the Asymptotic Iteration Method,” Journal of Physics A: Mathematical and General, Vol. 39, No. 22, 2006, pp. 6955-6964. doi:10.1088/0305-4470/39/22/010
[5] W.C. Qiang and S. H. Dong, “Arbitrary l-State Solutionsof the Rotating Morse poten-tial Through the Exact Quantization Method,” Physics Letters A, Vol. 363, No.3, 2007, pp. 169-176. doi:10.1016/j.physleta.2006.10.091
[6] S. M. Ikhdair, “An Approximate State Solutions of the Dirac Equation for the Generalized Morse Potential under Spin and Pseudospin Symmetry,” Journal of Mathematical Physics, Vol. 52, No. 5, 2011, pp. 052303- 052322. doi:10.1063/1.3583553
[7] S. M. Ikh-dair and R. Sever, “Any -State Solutions of the Woods-Saxon Potential in Arbitrary Dimension within the New Improved Quantization Rule,” International Journal of Modern Physics A, Vol. 25, No. 20, 2010, pp. 3941-3952. doi:10.1142/S0217751X10050160
[8] S. M. Ikhdair and R. Sever, “Exact Solution of the Klein-Gordon Equation for the PT-Symmetric Generalized Woods-Saxon Potential by the Nikiforov-Uvarov Method,” Annals of Physics (Leibzig), Vol. 16, No. 3, 2007, pp. 218-232. doi:10.1002/andp.200610232
[9] S. M. Ikhdair and R. Sever, “Approximate Eigenvalue and Eigen Function Solutions for the Generalized Hulthén Potential with any Angular Momentum,” Journal of Mathematical Chemistry, Vol. 42, No. 3, 2007, pp. 461- 471. doi:10.1007/s10910-006-9115-8
[10] C. Y. Chen, D. S. Sun and F. L. Lu, “Approximate Analytical Solutions of Klein-Gordon Equation with Hulthén Potentials for Nonzero Angular Momentum,” Physics Letters A, Vol. 370, No. 3-4, 2007, pp. 219-221; doi:10.1016/j.physleta.2007.05.079
[11] W. C. Qiang, R. S. Zhou and Y. Gao, “Any -State Solutions of the Klein-Gordon with the Generalized Hulthén Potential,” Physics Letters A, Vol. 371, No. 3, 2007, pp. 201-204; doi:10.1016/j.physleta.2007.04.109
[12] S. Dong, S.-H. Dong, H. Bahlouli and V. B. Bezzerra, “Algebraic Approach to the Klein-Gordon Equation with Hyperbolic Scarf Potential,” In-ternational Journal of Modern Physics E, Vol. 20, No.1, 2011, pp. 55-61. doi:10.1142/S0218301311017326
[13] S. M. Ikhdair and J. Abu-Hasna, “Quantization Rule Solution to the Hulthén Poten-tial in Arbitrary Dimension with a New Approximate Scheme for the Centrifugal Term,” Physica Scripta, Vol. 83, No.2, 2011, pp. 025002-7. doi:10.1088/0031-8949/83/02/025002
[14] G.-F. Wei, Z.-Z. Zhen and S.-H. Dong, “The Relativistic Bound and Scattering States of the Manning-Rosen Potential with an Improved New Approximate Scheme to the Centrifugal Term,” Central European Journal of Physics, Vol. 7, No. 1, 2009, pp. 175-183. doi:10.2478/s11534-008-0143-9
[15] S.M. Ikhdair and R. Sever, “Approximate Bound State Solutions of Dirac Equation with Hulthén Potential Including Coulomb-Like Tensor Poten-tial,” Applied Mathe- matics and Computation, Vol. 216, No. 3, 2010, pp. 911- 923. doi:10.1016/j.amc.2010.01.104
[16] S. Flügge, “Practical Quantum Mechanics,” Vol. 1, Springer, Berlin, 1994.
[17] J. Y. Guo, J. Meng and F. X. Xu, “Any -State Solutions of the Klein-Gordon Equation with Special Hulthén Potentials,” Chiniese Physics Letters, Vol. 20, 2003, pp. 602-604.
[18] A. D. Alhaidari, “Solution of the Relativistic Dirac-Hulthen Problem,” Journal of Physics A, Vol. 37, 2004, pp. 5805-5813. doi:10.1088/0305-4470/37/22/007
[19] O. Bayrak, G. Kocak and I. Boztosun, “Any -State Solutions of the Hulthén Potential by the Asymptotic Iteration Method,” Journal of Physics A: Mathematical and General, Vol. 39, 2006, pp. 11521-11529. doi:10.1088/0305-4470/39/37/012
[20] S. Haouat and L. Che-touani, “Approximate Solutions of Klein-Gordon and Dirac Equations in the Presence of the Hulthén Potential,” Physica Scripta, Vol. 77, 2008, pp. 025005-6; doi:10.1088/0031-8949/77/02/025005
[21] E. Ol?ar, R. Ko? and H. Tütüncüler, “The Exact Solution of the s-Wave Klein-Gordon Equation for the Generalized Hulthén Potential by the Asymptotic Iteration Method,” Physica Scripta, Vol. 78, 2008, pp. 015011-4;
[22] C. S. Jia, J. Y. Liu and P. Q. Wang, “A New Approximation Scheme for the Centrifugal Term and Hulthén Potential,” Physics Letters A, Vol. 372, 2008, pp. 4779-4782.
[23] S.-H. Dong, “A New Quantization Rule to the Energy Spectra for Modified Hyperbolic-Type Potentials,” International Journal of Quantum Chemistry, Vol. 109, No. 4, 2009, pp. 701-707. doi:10.1002/qua.21862
[24] M. F. Man-ning, “Exact Solutions of the Schr?dinger Equation,” Physical Review, Vol. 48, 1935, pp. 161-164. doi:10.1103/PhysRev.48.161
[25] A. Diaf, A. Chouchaoui and R. L. Lombard, “Feynman Integral Treatment of the Bargmann Potential,” Annals of Physics, Vol. 317, 2005, pp. 354-365. doi:10.1016/j.aop.2004.11.010
[26] G.-F. Wei, C.-Y. Long and S.-H. Dong, “The Scattering of the Manning- Rosen Potential with Centrifugal Term,” Physics Letters A, Vol. 372, No. 15, 2008, pp. 2592-2596. doi:10.1016/j.physleta.2007.12.042
[27] S.-H. Dong and J. Garcia-Ravelo, “Exact Solutions of the s-Wave Schr?dinger Equation with Manning-Rosen Potential,” Physica Scripta, Vol. 75, 2007, pp. 307-309. doi:10.1088/0031-8949/75/3/013
[28] W.-C. Qiang and S. H. Dong, “Analytical Approximation to the Solutions of the Manning-Rosen Potential with Centrifugal Term,” Physics Letters A, Vol. 368, No.1-2, 2007, pp. 13-17. doi:10.1016/j.physleta.2007.03.057
[29] W.-C. Qiang and S.-H. Dong, “The Manning-Rosen Potential Studied by a New Approximate Scheme to the Centrifugal Term,” Physica Scripta, Vol. 79, No. 4, 2009, p. 045004. doi:10.1088/0031-8949/79/04/045004
[30] C. Y. Chen, F. L. Lu and D. S. Sun, “Exact Solutions of Scattering States for the s-Wave Schr?dinger Equation with the Manning-Rosen Poten-tial,” Physica Scripta, Vol. 76, 2007, pp. 428-430. doi:10.1088/0031-8949/76/5/003
[31] S. M. Ikhdair, “On the Bound-State Solutions of the Manning-Rosen Potential Includ-ing an Improved Approximation to the Orbital Centrifugal Term,” Physica Scripta, Vol. 83, 2011, pp. 015010-10. doi:10.1088/0031-8949/83/01/015010
[32] E. Ol?ar, R. Ko? and H. Tütüncüler, “Bound States of the s-Wave Equation with Equal Scalar and Vector Standard Eckart Potential,” Chinese Physics Letters, Vol. 23, 2006, pp. 539-541. doi:10.1088/0256-307X/23/3/004
[33] W.-C. Qiang, J.-Y. Wu and S.-H. Dong, “The Eckart- Like Potential Studied by a New Approximate Scheme to the Centrifugal Term,” Physica Scripta, Vol. 79, No. 6, 2009, p. 065011. doi:10.1088/0031-8949/79/06/065011
[34] X. Zou, L. Z. Yi and C. S. Jia, “Bound States of the Dirac Equation with Vector and Scalar Eckart Potentials,” Physics Letters A, Vol. 346, 2005, pp. 54-64. doi:10.1016/j.physleta.2005.07.075
[35] G.-F. Wei, S.-H. Dong and V. B. Bezerra, “The Relativistic Bound and Scatter-ing States of the Eckart Potential with a Proper New Approxi-mate Scheme for the Centrifugal Term,” International Journal of Modern Physics A, Vol. 24, No. 1, 2009, pp. 161-172. doi:10.1142/S0217751X09042621
[36] C. S. Jia, P. Guo and X. L. Peng, “Exact Solutions of the Dirac-Eckart Problem with Spin and Pseudospin Symmetry,” Journal of Physics A: Mathematical and Theoretical, Vol. 39, No. 24, 2006, pp. 7737-7744. doi:10.1088/0305-4470/39/24/010
[37] S. H. Dong, W. C. Qiang, G. H. Sun and V. B. Bezerra, “Analytical Approxima-tions to the -Wave Solutions of the Schr?dinger Equation with the Eckart Potential,” Journal of Physics A: Mathematical and Theoretical, Vol. 40, No. 34, 2007, pp. 10535-10540. doi:10.1088/1751-8113/40/34/010
[38] W.-C. Qiang and S.-H. Dong, “Analytical Approximation to the -Wave Solutions of the Klein-Gordon Equation for a Second P?schl-Teller Like Potential,” Physics Letters A, Vol. 372, No. 27-28, 2008, pp. 4789-4792. doi:10.1016/j.physleta.2008.05.020
[39] S. M. Ikhdair, “Ap-proximate Solutions of the Dirac Equation for the Rosen-Morse Potential Including the Spin-Orbit Centrifugal Term,” Journal of Mathematical Physics, Vol. 51, No. 2, 2010, pp. 023525-16; doi:10.1063/1.3293759
[40] G.-F. Wei and S.-H. Dong, “Pseudospin Symmetry for Modified Rosen-Morse Potential Including a Pekeris- Type Approximation to the Pseudo-Centrifugal Term,” The European Physical Journal A, Vol. 46, No. 2, 2010, pp. 207-212. doi:10.1140/epja/i2010-11031-0
[41] C. Eckart, “The Penetra-tion of a Potential Barrier by Electrons,” Physics Review, Vol. 35, No. 11, 1930, pp. 1303-1309. doi:10.1103/PhysRev.35.1303
[42] F. Cooper, A. Khare and U. Sukhatme, “Supersymmetry and Quantum Mechanics,” Physics Report, Vol. 251, No. 5-6, 1995, pp. 267-385. doi:10.1016/0370-1573(94)00080-M
[43] J. J. Weiss, “Mechanism of Proton Transfer in Acid-Base Reactions,” Journal of Chemical Physics, Vol. 41, 1964, pp. 1120-1124. doi:10.1063/1.1726015
[44] A. Cimas, M. Aschi, C. Barrien-tos, V. M. Ray?n, J. A. Sordo and A. Largo, “Computational Study on the Kinetics of the Reaction of with ,” Chemical Physics Letters , Vol. 374, No. 5-6, 2003, pp. 594-600. doi:10.1016/S0009-2614(03)00771-1
[45] C. S. Jia, X. L. Zeng and L. T. Sun, “PT Symmetry and Shape Invariance for a Potential Well with a Barrier,” Physics Letters A, Vol. 294, No. 3-4, 2002, pp. 185-189. doi:10.1016/S0375-9601(01)00840-4
[46] C. S. Jia, Y. Li, Y. Sun, J. Y. Liu and L. T. Sun, “Bound States of the Five Parametric Exponential-Type Potential Model,” Physics Letters A, Vol. 311, No. 2-3, 2003, pp. 115-125. doi:10.1016/S0375-9601(03)00502-4
[47] H. E?rifes, D. Demirhan and F. Büyükk?l??, “Exact Solutions of the Schr?dinger Equation for Two Deformed Hyperbolic Molecu-lar Potentials,” Physica Scripta, Vol. 60, No.3, 1999, pp. 195-198. doi:10.1238/Physica.Regular.060a00195
[48] A. Arai, “Ex-actly Solvable Supersymmetric Quantum Mechanics,” Journal of Mathematical Analysis and Applications, Vol. 158, No.1, 1991, pp. 63-79. doi:10.1016/0022-247X(91)90267-4
[49] R. Dutt, A. Khare and U. Sukhatme, “Supersymmetry, Shape Invariance, and Exactly Solvable Potentials,” American Journal of Physics, Vol. 56, No.2, 1988, pp. 163-168. doi:10.1119/1.15697
[50] R. De, R. Dutt and U. Sukhatme, “Mapping of Shape Invariant Poten-tials Under Point Canonical Transformations,” Journal of Physics A: Mathematical and General, Vol. 25, No. 13, 1992, pp. L843-L850. doi:10.1088/0305-4470/25/13/013
[51] M. Hruska, W.Y. Ke-ung and U. Sukhatme, “Accuracy of semi classical Methods for Shape-Invariant Potentials,” Physics Review A, Vol. 55, No. 5, 1997, pp. 3345-3350. doi:10.1103/PhysRevA.55.3345
[52] L.Z. Yi, Y.F. Diao, J.Y. Liu and C.S. Jia, “Bound States of the Klein-Gordon Equation with Vector and Scalar Rosen-Morse-Type Potentials,” Physics Letters A, Vol. 333, 2004, pp. 212-217. doi:10.1016/j.physleta.2004.10.054
[53] R.L. Greene and C. Aldrich, “Variational Wave Functions for a Screened Coulomb Potential,” Physics Review A, Vol. 14, 1976, pp. 2363-2366. doi:10.1103/PhysRevA.14.2363
[54] G. F. Wei, C. Y. Long, X. Y. Duan and S. H. Dong, “Arbitrary -Wave Scattering State Solutions of the Schr?dinger Equation for the Eckart Potential,” Physica Scripta, Vol. 77, 2008, pp. 035001-5. doi:10.1088/0031-8949/77/03/035001
[55] C. Y. Chen, D. S. Sun and F.L. Lu, “Analytical Approximations of Scattering States to the -Wave Solutions for the Schr?dinger Equation with the Eckart Potential,” Journal of Physics A: Mathematical and Theoretical, Vol. 41, No. 3, 2008, pp. 035302. doi:10.1088/1751-8113/41/3/035302
[56] A. Soylu, O. Bayrak and I. Boztosun, “ -State Solutions of the Dirac Equation for the Eckart Potential with Pseudospin- and Spin-Symmetry,” Journal of Physics A: Mathematical and Theoretical, Vol. 41, 2008, pp. 065308-8. doi:10.1088/1751-8113/41/6/065308
[57] L. H. Zhang, X. P. Li and C. S. Jia, “Analytical Approximation to the Solution of the Dirac Equation with the Eckart Potential Including the Spin-Orbit Coupling Term,” Physics Letters A, Vol. 372, 2008, pp. 2201-2207. doi:10.1016/j.physleta.2007.11.022
[58] Y. Zhang, “Approxi-mate Analytical Solutions of the Klein-Gordon Equation with scalar and Vector Eckart Potentials,” Physica Scripta, Vol. 78, 2008, pp. 015006-4. doi:10.1088/0031-8949/78/01/015006
[59] C. S. Jia, J. Y. Liu and P. Q. Wang, “A New Approximation Scheme for the Cen-trifugal Term and the Hulthén Potential,” Physics Letters A, Vol. 372, No. 27-28, 2008, pp. 4779-4782. doi:10.1016/j.physleta.2008.05.030
[60] A. F. Nikiforov and V. B. Uvarov, “Special Functions of Mathematical Physics,” Birkhauser, Bassel, 1988.
[61] S. M. Ikhdair and R. Sever, “Exact Quantization Rule to the Kratzer-Type Potentials: An Application to the Diatomic Molecules,” Journal of Mathe-matical Chemistry, Vol. 45, No. 4, 2009, pp. 1137-1152. doi:10.1007/s10910-008-9438-8
[62] S. M. Ikhdair and R. Sever, “Solutions of the Spatially- Dependent Mass Dirac Equation with the Spin and Pseudospin Symmetry for the Cou-lomb-Like Potential,” Applied Mathematics and Computation, Vol. 216, No. 2, 2010, pp. 545-555. doi:10.1016/j.amc.2010.01.072
[63] S. M. Ikhdair, C. Berk-demir and R. Sever, “Spin and Pseudospin Symmetry Along With Orbital Dependency of the Dirac- Hulthén Problem,” Applied Mathematics and Computation, Vol. 217, No. 22, 2011, pp. 9019-9032. doi:10.1016/j.amc.2011.03.109
[64] S. M. Ikhdair and R. Sever, “Bound-States of a Semi- Relativistic Equation for the PT-Symmetric Generalized Potential by the Nikiforov-Uvarov Method,” International Journal of Modern Physics E, Vol. 17, No. 6, 2008, pp. 1107-1123. doi:10.1142/S0218301308010337
[65] A. de Souza Dutra and G. Chen, “On Some Classes of Exactly-Solvable Klein-Gordon Equations,” Physics Letters A, Vol. 349, 2006, pp. 297-301. doi:10.1016/j.physleta.2005.09.056
[66] G. Chen, “Solutions of the Klein-Gordon for Exponential Scalar and Vector Poten-tials,” Physics Letters A, Vol. 339, 2005, pp. 300-303. doi:10.1016/j.physleta.2005.03.040
[67] S. M. Ikhdair, “Rota-tion and Vibration of Diatomic Molecule in the Spa-tially-Dependent Mass Schrodinger Equation with Generalized q-Deformed Morse Potential,” Chemical Physics, Vol. 361, No. 1-2, 2009, pp. 9-17. doi:10.1016/j.chemphys.2009.04.023
[68] N. Saad, “The Klein-Gordon Equation with a Generalized Hulthén Potential in D-Dimensions,” Physica Scripta, Vol. 76, 2007, pp. 623-627. doi:10.1088/0031-8949/76/6/005
[69] W. C. Qiang, R. S. Zhou and Y. Gao, “Any -State Solutions of the Klein-Gordon Equation with the Generalized Hulthén Poten-tial,” Physics Letters A, Vol. 371, No. 3, 2007, pp. 201-204. doi:10.1016/j.physleta.2007.04.109
[70] S. M. Ikhdair and R. Sever, “Any -State Improved Quasi-Exact Analytical Solu-tions of the Spatially Dependent Mass Klein-Gordon Equation for the Scalar and Vector Hulthén Potentials,” Physica Scripta, Vol. 79, No. 3, 2009, pp. 035002-12. doi:10.1088/0031-8949/79/03/035002
[71] N. Rosen and P. M. Morse, “On the Vibrations of Polyatomic Molecules,” Physics Review, Vol. 42, No. 2, 1932, pp. 210-217. doi:10.1103/PhysRev.42.210
[72] A. S. de Castro, “Klein-Gordon Particles in Mixed Vector-Scalar Inversely Linear Potentials,” Physics Letters A, Vol. 338, 2005, p. 81. doi:10.1016/j.physleta.2005.02.027
[73] F. Cooper, A. Khare and U. P. Sukhatme, “Supersymmetry in Quantum Mechanics,” World Scientific, Singapore, 2001.
[74] C. M. Bender and S. Boettcher, “Real Spectra in Non- Hermitian Hamiltonians Having PT Symmetry,” Physical Review Letters, Vol. 80, No. 24, 1998, pp. 5243-5246. doi:10.1103/PhysRevLett.80.5243
[75] C. B. C. Jasso, “Baryon Spectra in a Quark-Diquark Model with the Trigono-metric Rosen- Morse Potential,” MS Thesis (in Spanish), Insti-tute of Physics, Autonomous University of San Luis Potosi, México, 2005.
[76] M. R. Spiegel, “Mathematical Handbook of Formulas and Tables,” McGraw-Hill Publishing Company, New York, 1968.
[77] E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane and T.M. Yan, “Charmonium: Comparison with Experiment,” Physical Review D, Vol. 21, No. 1, 1980, pp. 203-233. doi:10.1103/PhysRevD.21.203

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.