[1]
|
Novoselov, K.S., Falko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G. and Kim, K. (2012) A Roadmap for Graphene. Nature, 490, 192-200. https://doi.org/10.1038/nature11458
|
[2]
|
Tan, Y.B. and Lee, J.M. (2013) Graphene for Supercapacitor Applications. Journal of Materials Chemistry A, 1, 14814-14843. https://doi.org/10.1039/c3ta12193c
|
[3]
|
Liu, C., Yu, Z., Neff, D., Zhamu, A. and Jang, B.Z. (2010) Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Letters, 10, 4863-4868. https://doi.org/10.1021/nl102661q
|
[4]
|
Yu, A., Roes, I., Davies, A. and Chen, Z. (2010) Ultrathin, Transparent, and Flexible Graphene Films for Supercapacitor Application. Applied Physics Letters, 96, Article ID: 253105. https://doi.org/10.1063/1.3455879
|
[5]
|
Mishra, A.K. and Ramaprabhu, S. (2011) Functionalized Graphene-Based Nano Composites for Supercapacitor Application. Journal of physical Chemistry C, 115, 14006-14013. https://doi.org/10.1021/jp201673e
|
[6]
|
Lin, T., Huang, F., Lianga, J. and Wang, Y. (2011) A Facile Preparation Route for Boron-Doped Graphene, and Its CdTe Solar Cell Application. Energy & Environmental Science, 4, 862-865. https://doi.org/10.1039/C0EE00512F
|
[7]
|
Wang, X., Zhi, L. and Mullen, K. (2007) Transparent Conductive GrapheneElec Trodes for Dye-Sensitized Solar Cells. Nano Letters, 8, 323-327. https://doi.org/10.1021/nl072838r
|
[8]
|
Xia, F., Mueller, T., Golizadeh-Mojarad, R., Freitag, M., Lin, Y.M., Tsang, J., Perebeinos, V. and Avouris, P. (2009) Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor. Nano Letters, 9, 1039-1044. https://doi.org/10.1021/nl8033812
|
[9]
|
Stampfer, C., Schurtenberger, E., Molitor, F., Guttinger, J., Ihn, T. and Ensslin, K. (2008) Tunable Graphene Single Electron Transistor. Nano Letters, 8, 2378-2383. https://doi.org/10.1021/nl801225h
|
[10]
|
Zhang, Y., Nayak, T.R., Hongb, H. and Cai, W. (2012) Graphene: A Versatile Nanoplatform for Biomedical Applications. Nanoscale, 4, 3833-3842. https://doi.org/10.1039/c2nr31040f
|
[11]
|
Chung, C., Kim, Y.K., Shin, D., Ryoo, S.R., Hong, B.H. and Min, D.H. (2013) Biomedical Applications of Graphene and Graphene Oxide. Account of Chemical Research, 46, 2211-2224. https://doi.org/10.1021/ar300159f
|
[12]
|
Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009) Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano, 3, 3884-3890. https://doi.org/10.1021/nn9010472
|
[13]
|
Zhao, X., Zhang, Q. and Chen, D. (2010) Enhanced Mechanical Properties of Graphene-Based Poly (Vinyl Alcohol) Composites. Macromolecules, 43, 2357-2363. https://doi.org/10.1021/ma902862u
|
[14]
|
Frank, I.W., Tanenbaum, D.M., van der Zande, A.M. and McEuen, P.L. (2007) Mechanical Properties of Suspended Graphene Sheets. Journal of Vacuum Science & Technology B, 25, 2558-2561. https://doi.org/10.1116/1.2789446
|
[15]
|
Min, K. and Aluru, N.R. (2011) Mechanical Properties of Graphene under Shear Deformation. Applied Physics Letters, 98, 13111-13113. https://doi.org/10.1063/1.3534787
|
[16]
|
Lang, B. (1975) A Leed Study of the Deposition of Carbon on Platinum Crystal Surfaces. Surface Science, 53, 317-329. https://doi.org/10.1016/0039-6028(75)90132-6
|
[17]
|
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Du bonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. https://doi.org/10.1126/science.1102896
|
[18]
|
Zhu, C., Guo, S., Fang, Y. and Dong, S. (2010) Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano, 4, 2429-2437. https://doi.org/10.1021/nn1002387
|
[19]
|
Ruiz-Hitzky, E., Darder, M., Fernandes, F.M., Zatile, E., Palomares, F.J. and Aranda, P. (2011) Supported Graphene from Natural Resources: Easy Preparation and Applications. Advanced Materials, 23, 5250-5255. https://doi.org/10.1002/adma.201101988
|
[20]
|
Muramatsu, H., Kim, Y.A., Yang, K.S., Cruz-Silva, R., Toda, I., Yamada, T., Terrones, M., Endo, M., Hayashi, T. and Saitoh, H. (2014) Rice Husk-Derived Graphene with Nano-Sized Domains and Clean Edges. Small, 10, 2766-2770. https://doi.org/10.1002/smll.201400017
|
[21]
|
Barata, J.F.B., Daniel-da-Silva, A.L., Neves, M., Graça, P.M.S., Cavaleiro, J.A.S. and Trindade, T. (2013) Corrole-Silica Hybrid Particles: Synthesis and Effects on Singlet Oxygen Generation. RSC Advances, 3, 274-280. https://doi.org/10.1039/C2RA22133K
|
[22]
|
Dalagan, J.Q. and Enriquez, E.P. (2014) One-Step Synthesis of Mesoporoussilica–Graphene Composites by Simultaneous Hydrothermal Coupling and Reduction of Grapheme Oxide. Bulletin of Materials Science, 37, 589-595. https://doi.org/10.1007/s12034-014-0661-6
|
[23]
|
Yang, T., Liu, L.H., Liu, J.W., Chen, M.L. and Wang, J.H. (2012) Cyanobacte Riummetallothionein Decorated Graphene Oxide Nanosheets for Highly Selective Adsorption of Ultra-Trace Cadmium. Journal of Materials Chemistry, 22, 21909-21916. https://doi.org/10.1039/c2jm34712a
|
[24]
|
Panwar, V., Chattree, A. and Pal, K. (2015) A New Facile Route for Synthesizing of Graphene Oxide Using Mixture of Sulfuric–Nitric–Phosphoric Acids As Intercalating Agent. Physica E, 73, 235-241. https://doi.org/10.1039/c2jm34712a
|
[25]
|
Das, A., Chakraborty, B. and Sood, A.K. (2008) Raman Spectroscopy of Graphene on Different Substrates and Influence of Defects. Bulletin of Materials Science, 31, 579-584. https://doi.org/10.1007/s12034-008-0090-5
|
[26]
|
Huang, D., Yang, Z., Li, X., Zhang, L., Hu, J., Su, Y., Hu, N., Yin, G., He, D. and Zhang, Y. (2017) Three-Dimensional Conductive Networks Based on Stacked SiO2@Graphene Frameworks for Enhanced Gas Sensing. Nanoscale, 9, 109-118. https://doi.org/10.1039/C6NR06465E
|
[27]
|
Lu, T., Pan, L., Li, H., Nie, C., Zhu, M. and Sun, Z. (2011) Reduced Grapheneoxide Carbon Nanotubes Composite Films by Electrophoretic Deposition Method for Supercapacitors. Journal of Electroanalytical Chemistry, 661, 270-273. https://doi.org/10.1016/j.jelechem.2011.07.042
|
[28]
|
Bettini, L.G., Divitini, G., Ducati, C., Milani, P. and Piseri, P. (2014) Nickel Nano-particles Effect on the Electrochemical Energy Storage Properties of Carbon Nanocompositefilms. Nanotechnology, 25, 435401. https://doi.org/10.1088/0957-4484/25/43/435401
|
[29]
|
Zhang, K., Mao, L., Zhang, L.L., Chan, H.S.O., Zhao, X.S. and Wu, J. (2011) Surfactant-Intercalated, Chemically Reduced Graphene Oxide for High Performance Supercapacitor Electrodes. Journal of Materials Chemistry, 21, 7302-7307. https://doi.org/10.1039/c1jm00007a
|
[30]
|
Stoller, M.D., Park, S., Zhu, Y., An, J. and Ruoff, R.S. (2008) Graphene-Based Ultracapacitors. Nano Letters, 8, 3498-3502. https://doi.org/10.1021/nl802558y
|
[31]
|
Yang, X., Zhu, J., Qiu, L. and Li, D. (2011) Bioinspired Effective Prevention of Restacking in Multilayeredgraphene Films: Towards the Next Generation of High-Performance Supercapacitors. Advanced Materials, 3, 2833-2838. https://doi.org/10.1002/adma.201100261
|
[32]
|
Cui, L.F., Hu, L., Choi, J.W. and Cui, Y. (2010) Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries. ACS Nano, 4, 3671–3678. https://doi.org/10.1021/nn100619m
|
[33]
|
Wanga, J., Zhaoa, H., Hea, J., Wanga, C. and Wang, J. (2011) Nano-Sized SiOx/C Composite Anode for Lithium Ion Batteries. Journal of Power Sources, 196, 4811-4815. https://doi.org/10.1016/j.jpowsour.2011.01.053
|
[34]
|
Guerfi, A., Charest, P., Dontigny, M., Trottier, J., Lagacé, M., Hovington, P., Vijh, A. and Zaghib, K. (2011) SiOx-Graphite As Negative for High Energy Li-ion Batteries. Journal of Power Sources, 196, 5667-5673. https://doi.org/10.1016/j.jpowsour.2011.02.018
|
[35]
|
Yang, J., Takeda, Y., Imanishi, N., Capiglia, C., Xie, J.Y. and Yamamoto, O. (2002) SiOx-Based Anodes for Secondary Lithium Batteries. Solid State Ionics, 152, 125-129. https://doi.org/10.1016/S0167-2738(02)00362-4
|