Likelihood and Quadratic Distance Methods for the Generalized Asymmetric Laplace Distribution for Financial Data ()
1. Introduction
1.1. Generalized Asymmetric Laplace (GAL) Distribution
The generalized asymmetric Laplace distribution (GAL) is a four parameters infinitely divisible continuous distribution with four parameters given by
(1)
The parameter
is a location parameter and
is a scale parameter. The parameter
can be viewed as the asymmetry parameter of the distribution and
is the shape parameter which controls the thickness of the tail of the distribution. If
, the distribution is symmetric around
, see Kotz et al. ( [1] , p. 180). It is flexible and can be used as an alternative to the four parameters stable distribution. The GAL distribution has a thicker tail than the normal distribution but unlike the stable distribution where even the first positive moment might not exist, all the positive integer moments exist. Its moment generating function is
(2)
must satisfy the inequality
(3)
The GAL distribution is also known as variance gamma (VG) distribution. It was introduced by Madan and Senata [2] , Madan et al. [3] . For the GAL distribution, we adopt the parameterizations used by Kotz et al. [1] . It is not difficult to relate them to the original parameterization, see Senata [4] . The commonly used parameterisations will be discussed in Section (1.2).
From the moment generating function, it is easy to see that the first four cumulants of the GAL distribution are given by
(4)
(5)
Note that
if
and
can be positive or negative depending on values of the parameters .Therefore, the GAL distribution can be symmetric or asymmetric. Furthermore, with
, the tail of the GAL distribution is thicker than the normal distribution. These characteristics make the GAL distribution useful for modelling asset returns, see Senata [4] for further discussions on financial modelling using the GAL distribution.
The moments can be obtained based on cumulants and they are given below,
The GAL distribution belongs to the class of normal mean-variance mixture distributions where the mixture variable follows agamma distribution with shape parameter
and scale parameter equal to 1, i.e., with density function
,
is the commonly used gamma function.
This leads to the following representation in distribution using Expression (4.1.10) in Kotz et al. ( [3] , p. 183),
where (6)
1)
2)
as given by expression (8) and independent of
3)
are parameters with
。
The representation given by expression (6) is useful for simulating samples from a GAL distribution. Note that despite the simple closed form expression for the moment generating function, the density function is rather complicated as it depends on the modified Bessel function of the third kind with real index
, i.e.,
see Kotz et al. ( [1] , p. 315) for various representations for the function
. The density function will be introduced in Section (1.2). Using the moment generating function of the GAL distribution, it is easy to see that the distribution is related to a Lévy process, see Podgorski and Wegener [5] for GAL processes.
The GAL parametric family can be introduced as a limit case of the generalized hyperbolic (GH) family where the mixing random variable belongs to the generalized inverse Gaussian family, see Mc Neil et al. [6] for properties of the GH family. Note that the GAL family is nested within the bilateral gamma family as the GAL random variable can be represented in distribution as
, (7)
and
are independent random variables with common gamma distribution. The common mgf of the gamma distribution is given by
, see expression (4.1.1) given by Kotz et al. ( [1] , p. 183).
If we introduce
using
, the GAL distribution can also be
parameterised using the four equivalent parameters, i.e., with
.
Moment estimation for the GAL family has been given by Podgorski and Wegener [5] . Maximum likelihood estimation for the GH family by fixing the parameter
within some bounds has been given by Protassov [7] , McNeil et al. ( [6] , p. 80). For ML estimation, they implicitly assumed that the mixing random
variable
which implies the following form of the moment
generating function for
,
From the above expression, it is easy to see that the parameter
is redundant and the parameterisation using five parameters will introduce instability in the estimation process. It appears to be simpler to use the parameterisation given by Kotz et al. [1] or the parametrisation used by Madan and Senata [2] , Madan et al. [3] , Senata [4] with only four parameters by letting
.
Hu [8] advocated fitting the GAL distribution using the EM algorithm but the drawback of this approach is the difficulty to obtain the information matrix using the method of Louis [9] , see McLachlan and Krishnan [10] for a comprehensive review of the EM algorithm. The lack of a closed form asymptotic covariance matrix for the estimators might create difficulties for hypotheses testing.
1.2. Some Properties of the GAL Distribution and Parameterisations
In this subsection, we first review a few parameterisations which are commonly used for the GAL distribution.
Definition 1 (GAL density)
From the GH density, the density function for the GAL distribution can be obtained and it can be expressed as
(8)
The vector of parameters is
and we shall call this parametrisation parameterisation1.The density can be derived using thenormal mean variance mixture representation given by expression (6). See expression (3.30) given by Mc Neil et al. ( [6] , p. 78).
Alternatively, by letting
and keeping other parameters as in
parametrisation 1, we obtain the following expression for the density of a GAL distribution
(9)
with the vector of parameters given by
. We shall call this parameterisation, parameterisation 2 which is used by Kotz et al. ( [1] , p. 184).
Note that
are respectively the location and scale parameter with either parameterisation 1 or 2. Setting
, the standardized GAL density with parameterisation 2 will have only two parameters and it is given by
or equivalently by using parametrisation1,
.
Following Kotz et al. [1] we only use these two parametrisations but it is easy to see their relationships with parametrisation 3 used by Madan et al. [3] and Senata [4] . With parametrisation 3, the mgf of the GAL distribution is
(10)
the parameters are
with
.
The first four moments using parameterisation 3 as given by Senata ( [4] , p. 181) aregiven below,
,
The GAL random variable can also be expressed as the difference of two independent gamma random variables, the GAL random variable is nested inside the class of bilateral gamma random variable
which can be represented as
(11)
with
,
are independent gamma random variables with the mgf’s given
respectively by
and
. We obtain the GAL random variable by letting
and
.
The class of bilateral gamma distribution was introduced by Küchler and Tappe [11] and they have shown that the Esscher transform of a bilateral gamma distribution remains within this class of distribution .More specifically, let
be the random variable with mgf given by
. I is easy to see
that
,
and
are independent gamma random variables with common shape parameter
and scale parameters given
respectively by
and
.
For option pricing with the risk neutral approach, this property is useful as it is easy to simulate samples from a bilateral gamma distribution. The use of Esscher transform to find risk neutral parameters for option pricing in financeisdue to the seminal works of Gerber and Shiu [12] . The Esscher transform risk neutral parameters can also be interpreted as minimum entropy risk neutral parameters. See Miyahara [13] for this interpretation, see section 4 for more discussions on financial applications.
For numerical methods to find estimators, Nelder-Mead simplex method and related derivative free simplex methods are recommended. Derivative free simplex direct search methods are well described in chapter 16 of the book by Bierlaire [14] .
The paper is organized as follows. In Section 2, some submodels of the GAL family are introduced to highlight the difficulty on obtaining the asymptotic covariance matrix using classical likelihood theory. Asymptotic properties of the ML estimators are investigated in section (3). The ML estimators for the GAL
family are shown to be consistent for
. For the special case with
,
this corresponds to the asymmetric Laplace (AL) model, we obtain the asymptotic covariance matrix in closed form using the approach based on M-estima- tion theory as given by Huber [15] which completes the missing components of expression (2) given by Kotz et al. ( [16] , p. 818). As an alternative to ML estimation, QD estimation based on matching cumulant generating functions is developed in section (4) for the entire GAL family. The QD estimators are shown to be consistent and follow an asymptotic normal distribution. The asymptotic covariance matrix can be obtained in closed form for the entire GAL family using QD methods which makes testing for parameters easy to implement. Chi-square goodness of fit tests statistics can also be constructed based on the distance function used to obtained QD estimators. The methods are also general and can be applied to other models. Numerical issues and simulations illustrations are discussed in Section (5). A limited simulation study shows that the proposed QD estimators perform better than ML estimators overall for sample sizes
using parameters values often encountered for financial data. Some applications drawn from finance are discussed in Section (6).
We shall consider first a few submodels of the GAL model to show the difficulties encountered when likelihood theory is used to obtain the asymptotic covariance matrix for ML estimators.
The difficulties are mainly due to the score functions when viewed as functions of the parameters have a discontinuity point and fail to be differentiable. If the asymptotic covariance matrix for the ML estimators is derived based on likelihood theory, it will have missing components. This is the problem of expression (2) given by Kotz et al. ( [16] , p. 818) for the AL family, a subfamily of the GAL family. M-estimation theory will be used to replace likelihood theory for deriving the asymptotic covariance matrix.
2. Some Subfamilies of the GAL Family
Example 1
Let
and the only parameter is the location parameter
and the family is symmetric around
. Using the result
, the
density function is reduced to
Equivalently,
This is the well known double exponential distribution, the maximum likelihood estimator for
is the sample median. There is no Fisher information matrix available as the score function is discontinuous with respect to the parameter
. The asymptotic variance of the sample median can be found by using M-estimation theory, see Huber [17] , Huber [15] , also see Amemiya ( [18] , p. 148-154) on the least absolute deviations (LAD) estimator .We shall use the same approach to derive the asymptotic covariance matrix for the ML estimators for the GAL distribution with
. The GAL distribution when
is the asymmetric Laplace (AL) distribution. The AL distribution will be introduced below.
Example 2
Using the density of the GAL distribution and setting
, we obtain the AL distribution with only 3 parameters. The location and scale parameters are given respectively by
and the asymmetry parameter
. If parameterisation 2 is used, the density function
of the AL distribution is based on the standardized AL density as given by expression (4.1.31) in Kotz et al. ( [1] , p. 189) with
The AL family can be considered as a subfamily of the GAL family and the score functions for this model are again discontinuous. We shall derive the asymptotic covariance matrix using M-estimation theory in Section (3.2) and complete the expression (2) of Kotz et al. ( [16] , p. 818). The expression derived by the authors has missing components as it is derived based on likelihood theory. Kotz et al. [16] used a different parametrisation but it is equivalent to the one used in Kotz et al. ( [1] , p. 189) and it is not difficult to establish the links between these 2 parameterisations.
3. Maximum Likelihood Estimation for the GAL Family
3.1. Maximum Likelihood Estimation for the GAL Distribution
For consistency of the MLE, the following Theorem which is Theorem 2.5 given by Newey and McFadden ( [19] , p. 2131) is useful. We make the basic assumption that we have a random sample which consists of n iid observations
drawn from the GAL parametric family with density
where
is the vector of the true parameters.
Theorem (Consistency)
Assume that:
1) If
then
.
2) The parameter space
is compact,
.
3)
is a continuous with respect to
.
4)
.
Under the conditons stated, the ML estimators (MLE) given by the vector
is obtained by maximizing the log of the likelihood function
is consstent,
.
One can see that the conditions for consistency are mild, the condition d) will
be satisfied for the GAL family if
as the density function remains bounded. For
, the density functions with
tend to infinity as
, see Theorem 4.1.2 given by Kotz et al. ( [1] , p. 190-192).
It might be possible to prove consistency using the approach to obtain results of Theorem 4 by Broniatowski et al. ( [20] , p. 2578).
For asymptotic normality, it is more complicated as standard theory often requires that the function
being twice differentiable with respect to
. The appearance of the Bessel function creates further complications. It makes it very difficult to establish asymptotic properties even with the use of M estimation theory.
For the special case with
which corresponds to the AL distribution, the density function can be expressed without the use of the Bessel function and M- estimation theory can be used to find the asymptotic covariance matrix for the ML estimators. Asymptotic normality has been shown by Kotz et al. ( [1] , p. 158-174) but the asymptotic covariance matrix of the ML estimators is still incomplete.
The formula (2.2) given by Kotz et al. ( [16] , p. 818) does not give the correct asymptotic covariance for the ML estimators. The complete formula for the asymptotic covariance matrix of the ML estimators can be obtained using M-estimation theory. An example is given at the end of section (3.2) which shows that one cannot recover the common asymptotic variance of the sample median using results in Kotz et al. ( [16] , p. 818).
M-estimation theory allows the score functions when viewed as functions of the parameters to have a few points of discontinuities and full differentiability with respect to
can be replaced by one side differentiability accordingly. Amemiya ( [18] , p. 151) uses this approach. For establishing asymptotic normality for the sample median, the sample median is viewed as a root given by a solution of the estimating equation
,
using the indicator function
,
and
if
.
The function
is simply the one side derivative and we adopt the notation
with the meaning of one side derivative, also see Hogg et
al. ( [21] , p. 538) on estimating equations based on the sign test. The probability of the existence of such a root tend to 1 as
.
Another M estimator for the location parameter
has been proposed by Huber ( [17] , p. 232-233). It consists of estimating
by solving
with
if
, k is chosen.
, if
.
For M-estimators based on
, where
is a vector of parameters, Huber [17] , Huber [15] has generalized and relaxed conditions for the classical Taylor expansion. The technical details can be found in his seminal paper and in Huber [15] . It can be summarized as follows. Suppose that the M-estimators given by
, given as the roots of the following estimating functions
. (12)
Under the following main conditions:
a)
, assuming
has been shown,
b)
with assumption N-3 given by Huber ( [15] , p. 132) and
is differentiable with respect to
, then we have the following representation:
,
and
is a term converging to 0 in probability.
When we compare with the usual Taylor expansion, we only require
to be differentiable with respect to
. This differentiability condition is satisfied for the AL family. Note that if indeed the score functions are differentiable then
is the Fisher information matrix.
For the technical details on how to verify the conditions N-3, see Hinkley and Revankar ( [22] , p. 7). The condition 1) is usually verified by making use of the Lebesgue dominated convergence theorem (LDGT) as given by Rudin ( [23] , p. 321). It can become every technical to construct integrable functions to bound the score functions in order to check the sufficient conditions for the LDGT but they are expected to hold for the AL distribution with the existence of all integer positive moments and the parameters space is assumed to be compact. Essentially, we need to show that the condition 2) is met by showing the convergence in probability of the integrals
,
is the
sample distribution function, the score functions are given by expressions (14)-(16).
From the above representation, we then have
.
The asymptotic covariance matrix of
is given by
, (13)
is the covariance matrix of the vector
,
is the vector of the true score functions or quasi score functions if a proxy density function is used to replace the true density function.
Now based on M-estimation theory, we proceed to find
and
for the AL distribution to obtain the asymptotic covariance matrix of the ML estimators in the following section.
3.2. Asymptotic Covariance Matrix for the AL Family
Kotz et al. [1] , Kotz et al. [16] have shown that the ML estimators for the AL distribution have an asymptotic normal distribution but their asymptotic covariance matrix given by expression (3.5.1) of Kotz ( [1] , p. 158) which is identical to expression (2) given by Kotz et al. ( [16] , p. 818) is still incomplete. If M-esti- mation theory is used then the asymptotic covariance matrix should be based on Corollary (3.2) as given by Huber ( [15] , p. 133), also see expression (12.18) given by Woolridge ( [24] , p. 407).
Since
,
the following derivatives are the score functions of the AL distribution,
(14)
, (15)
. (16)
Let
and
the vector of the true parameters we need to find first the vector
Subsequently, we need to find the derivatives of these expressions with respect to
then evaluated at
to obtain the matrix
. The matrix
generalizes the Fisher information matrix.
It will be reduced to this matrix if the score functions
are differentiable with respect to
. It is clear that the elements of
will have closed form expressions but are lengthy to display. To obtain
, note that we have a location and scale parameter. Consequently, it appears to be simpler to define first the standardized AL density as the AL density with
, i.e.,
and the AL density with three
parameters as
.
Making use of
,
,
or
, (17)
is the distribution function with density function
.
Similarly,
. (18)
Therefore,
can be obtained by first evaluating the term
using Leibnitz’s rule which taking into account the lower bound of the interval also depends on
then subsequently evaluate using Leibnitz’s rule the expression
.
Consequently,
The elements of
can be found subsequently by first forming
,
is as given by expression (17). Also,
is as given by expression (18),
with
using expression (4). With
or equivalently,
then the matrix
can be obtained by differentiating with respect to
the vector
and set
, i.e.,
.
Clearly, the elements of the matrix
have closed form expressions but are lengthy to display. Packages like MATLAB or Mathematica can handle symbolic derivatives and can be used to obtain these elements. Substituting
by the ML estimator
in
yields an estimate for the matrix
.
Now we turn our attention to the matrix ∑ which is the covariance matrix of the vector of score functions
. Using a different but equivalent parameterisation, this matrix has been obtained by Kotz et al. ( [16] , p. 818), Kotz et al. ( [1] , p. 158) but its inverse does not give the asymptotic covariance matrix of the ML estimators as claimed in their paper. It is not difficult to establish the relationships between the parameterisation used in example 2 and the one used in the paper by Kotz et al. ( [1] , p. 818).
Note that the inverse of Σ is not the asymptotic covariance matrix of the ML
estimators is due to
is not equal to
if the differ-
rentiability assumptions for the score functions do not hold, see corollary (3.2) and proposition (3.3) given by Huber ( [15] , p. 133).
The matrix
can also be estimated by the following estimator
.
Let us consider the following location model with known
and check the expression (2.2) as given by Kotz et al. ( [16] , p. 818) has missing components. The density function is given by
, or alternatively the density can also be expressed as
.
This subfamily will correspond to their parametrisation with
in their paper. The sample median
is the ML estimator for
, using their result it will
lead to conclude that the asymptotic variance is given by
,
as indicated by case1 in the table of their paper. On the other hand, it is known that the asymptotic distribution of the sample median is given by
, see expression (2.4.19) given by Lehmann
( [25] , p. 81) for example. For the location model being considered, we have
. Clearly,
but the correct asymptotic variance can
be obtained using expression (13).
For the general GAL distribution with four parameters, alternative methods of estimation based on quadratic distances (QD) which make use of the empirical cumulant generating function will be introduced in the next section. The QD
methods are developed based on empirical findings which show that the ML methods for finite sample sizes as large as n = 5000 do not give good estimates for the shape parameter
and the scale parameter
but ML methods give good estimates for the other two parameters. Howewer, the overall efficiency of ML methods lags behind QD methods in finite samples. Also, QD methods beside giving better estimates for
and
, the methods can be used for parameter testing since the asymptotic covariance matrix for the QD estimators can be obtained explicitly for the entire GAL family. The methods also provide a chi- square test statistics of goodness-of-fit for the model being used. Therefore, it might be of interests to consider using QD methods whenever ML methods might have deficiencies.
4. Quadratic Distance Methods
General Quadratic distance (QD) theory has been developed in Luong and Thompson [26] . Howewer, if it is used for estimating parameters of the GAL distribution we need to specify a distance which can generate estimators with good efficiencies. For applied works, it is also preferable to have methods which are relatively simple to implement numerically.
For financial data, observations are recorded as percentages so they are small in magnitude, we recommend minimizing the following distance based on matching the empirical cumulant generating function
with its model counterpart
using the following points
with
(19)
The choice of points as given above is suggested based on empirical findings that overall, the QD estimators are more efficient than the ML estimators for the range of parameters often encountered for modelling financial data using finite sample sizes as large as n = 5000. Note that the set of points chosen does not include the origin 0.
The empirical moment generating function, empirical cumulant generating function are given respectively by
and
.
The model cumulant generating function is
,
with
being the model moment generating function as defined by expression (1). The proposed QD estimators given by the vector
is obtained by minimizing with respect to
the following specific QD distance given by
. (20)
Once the estimates are obtained, goodness of fit test statistics with an asymptotic chi-square distribution with
degree of feedom can also be constructed. General QD distances theory can be used to derive the asymptotic covariance matrix of the QD estimators and the chi-square goodness of fit test statistics. They will be given at the end of this section. Having the asymptotic covariance matrix of the QD estimators in closed form for the GAL family is useful for parameter testing.
For notations, let us define the vector based on observations
.
Its model counterpart is the vector
.
Therefore,
Observe that the elements of the covariance matrix
for the vector
are given by
The elements of the approximate covariance matrix based on the differential method or delta method for
are given by
Under the regularity conditions given by Lemma (3.4.1) of Luong and Thompson ( [26] , p. 244), the QD estimators given by the vector
are consistent. Clearly, we need to assume that on the restricted parameter space the model moment generating function and the covariance matrix
given by expression (21) are well defined. Some modifications might be necessary if the methods are applied to other models. The conditions are met in general for the GAL distribution when used for modeling financial data. We then have
The asymptotic covariance for the QD estimators is simply
.
All the expressions which form
as given above are evaluated under the true vector of parameters
,
and
,
is the transpose of
.
We also use
to emphasize that these matrices depend on
. The matrix
is derived below. For constructing test statistics with chi-square limiting distribution, use expression (3.4.2) given by Luong and Thompson ( [26] , p. 248) to obtain
with
, a covariance matrix which depends on
and
(21)
In practice,
needs te be replaced by
so that an estimate of
can be defined as
.
We need to find the Moore-Penrose (MP) generalized inverse for
to constructa chi-square statistics. The quadratic form constructed with the MP inverse will follow a chi-square distribution asymptotically. Many computer packages provide prewritten functions to find the Moore-Penrose inverse of a matrix. It can also be computed easily using the spectral decomposition of
, i.e., using the representation
. The columns of the matrix
are the eigenvectors of
and
is a diagonal matrix with the diagonal elements being the corresponding eigenvalues of
given respectively by
. The matrix
is orthonormal with the property
.
The Moore Penrose inverse
can be obtained as
with
being the diagonal matrix constructed based on the diagonal elements
of
. The diagonal elements of
are given as
if
and
if
.
For discussions on property of the Moore Penrose generalized inverse,
see Theil ( [27] , p 273-274), also see expressions (4.3 - 4.6) given by Harville ( [28] , p 504). For numerical computations using R, see section 8.3 given by Fieller ( [29] , p. 123-133). The chi-square test statistics for testing the null hypothesis which specifies that observations are drawn from the GAL family can be based on the criterion function
(22)
. (23)
The limiting distribution of the test statistics is chi-square with
, based on Theorem 3.4.1 of Luong and Thompson ( [26] , p. 248). The test statistics can also be viewed as a generalized Pearson test statistics. The criterion function
can also be used to find a good starting vector to initialize the algorithms for finding the QD estimators, see section (3) given by Andrews ( [30] , p. 917- 922) for more discussions and section (5.2) of this paper.
5. Numerical Issues
5.1. Simplemoment Estimators
The simple approximate moment estimate proposed by Senata [4] can be found explicitly and can be used as starting points for numerical optimization to find QDE or MLE. Let the first four moments be denoted by
with
and equalizing with the model counterparts
and neglecting all the terms with
yields the following system of estimating equation for moment estimation,
. The moment estimators are
When converted to the
parameterization given by Kotz et al. [16] , the approximate moment estimators
for
are given respectively as
. The
approximate moment estimators are not efficient but they are simple and given explicitly .Therefore, they can be used as starting points for the numerical algorithms to implement QD or ML estimation. Moment estimators can also be verified to see whether they are appropriate as starting points. This will be discussed in the next section.
5.2. The Choice of an Initial Vector
Most of the algorithms will return a local minimizer and the vector which gives the estimators is defined to be the global minimizer. Due to this limitation, some cares are needed to ensure that we can identify the global minimizer. In practice, it is important to test the algorithm with various starting vectors, see Andrews [30] . Andrews [30] has suggested that it is preferable to have the starting vector
close to the vector of the estimators given by
which globally minimizes the objective function. We might look for a different starting vector if the vector of moment estimators cannot be used as a starting vector to initialize the numerical algorithm.
The criterion function
given by expression (22) which is used to construct goodness of fit test can also be used to select a good starting vector. The starting vector
is subject to the screening test by checking whether
,
is the 95th percentile of the chi-square distribution with 16 degree of freedom to be qualified as a suitable starting vector, see expression (3.5) given by Andrews ( [30] , p. 919). If
passes the screening test then one might consider to use
as the vector of starting points for the numerical algorithm used to find the vector of estimators, otherwise look for another one.
5.3. A limited Simulation Study
For financial data, observations are recorded as percentages so they are small in magnitude. We are in the situation of modeling with values for
and
are near 0. The plausible values for
and
. For parameters with these ranges we observe that the ML estimators for
and
do not perform well for sample size as large as
. For comparisons between QD methods vs ML methods, the ratio of total Mean square errors is used as a measure for the overall relative efficiency. Due to the limited capacity on computing as we only have access to a laptop computer, we can only use M = 100 samples with each sample is of a size n = 5000.
The overall relative efficiency for comparisons is defined as the ratio
The expressions for MSE and TMSE which appear in Table 1 are estimated using simulated samples. The results of the simulation study are lengthy. We only extract the key findings, which is summarized using Table 1.
The study seems to indicate that overall ML methods are less efficient than QD methods but ML methods are more efficient for estimating the first two
(a)Overall relative efficiency:
.
(b)Overall relative efficiency: TMSE ( QD ) TMSE ( ML ) = 0.0207 .
(c)Overall relative efficiency:
.
Table 1. Illustrations of simulation results.
parameters namely
for the AL family and for the entire GAL family in finite samples where little is known about the asymptotic distributions of the ML estimators.
6. Financial Applications
6.1. Option Pricing and Risk Neutral Parameters
For options as they are tradable, risk neutral parameters are used for pricing. Risk neutral parameters are related to the physical parameters which can be estimated using historical data. A set of risk neutral parameters can be obtained by using the Esscher transform change of measure, see Schoutens ( [31] , p 77) based on the seminal works of Gerber and Shiu [12] . They can also be viewed as minimum entropy risk neutral parameters, see Miyahara [13] . We keep the four historical parameters of the GAL distribution as risk neutral parameters but introduce an extra parameter
which is given by the following equation with
being the unknown variable and r is the known risk free rate,
where
is the moment generating function as given by expression (2).
Therefore, the risk neutral parameters are given by the vector
.
The price of the asset is modeled as
where:
a)
is the initial asset price at time
,
b)
,
c) the log returns
are i.i.d as
with mgf
.
We also assume
and
is a positive integer.
For pricing an European call option with the initial price
, strike price
and interest rate
, the price of the European call option is
where
and the expectation is under risk neural parameters. Therefore, it is possible use simulated samples from a bilateral gamma distribution to obtain an estimate for
and price the option.
Senata ( [4] , p. 182-184) has illustrated the use of the GAL family, moment and ML methods to analyze historical data from the Dow Jones industrial average and other indexes. It is not difficult to see that QD methods can be considered as alternative methods for analyzing financial data.
Beside option pricing, measures of risks are used in finance and actuarial sciences. These measures will depend on the underlying distribution which is specified by a set of parameters. We briefly discuss these notions below. The inferences techniques can also be applied to estimate the parameters using historical data and quantify the level of risks incurred.
6.2. VaR, CVar, EvaR Using the GAL Distribution
The Value at Risk at confidence level
of a continuous loss random variable
with distribution function
and density function
is defined as
is the quantile of the loss
specified by
, the probability of the potential loss encountered by the holder of a financial assetfor one unit of time. The conditional value at risk
, see Rockafellar and Uriyasev [32] for this mea-
sure of risk. If the log return random variable
follows a
,
, then the loss random variable is
.
Ahmadi-Javid [33] proposed a coherent measure of risk, the entropic value-at risk (EVaR) using the Chernoff bound, see the seminal paper by Chernoff [34] for the bound. EVaR is defined implicitly using of the moment generating function
. Since the moment generating function of the GAL distribution is relatively simple and does not involve the Bessel function, Evar can also be computed easily. For more discussions on estimation and risk measures, see Toma and Dedu [35] .
7. Conclusion
As we can see in finite samples, ML methods only offer good estimators for two of the four parameters for the GAL family. Asymptotic normality can only be guaranteed for the AL family and the lack of a covariance matrix in closed form prevents hypotheses testing for the GAL family. Due to these restrictions, QD methods are developed as complementary methods to ML methods. The methods appear to be suitable for estimation and for parameter testing. The methods also produce a criterion function when evaluated at the values taken by the QD estimators gives a chi-square goodness-of-fit test statistics for the GAL model. The criterion function can be used to select a starting vector which is close to the vector of the QD estimators to start a numerical search algorithm. These last two features are not shared directly by ML methods and appear to be useful for applications.
Acknowledgements
The helpful and constructive comments of referees which lead to an improvement of the presentation of the paper and support from the editorial staffs of Open Journal of Statistics to process the paper are all gratefully acknowledged here.