[1]
|
Prabhu, S. and Poulose, E. (2012) Silver Nanoparticles: Mechanism of Antimicrobial Action, Synthesis, Medical Applications, and Toxicity Effects. International Nano Letters, 2, 32. https://doi.org/10.1186/2228-5326-2-32
|
[2]
|
Haider, A. and Kang, I. (2015) Preparation of Silver Nanoparticles and Their Industrial and Biomedical Applications. A Comprehensive Review. Advances in Materials Science and Engineering, 2015, Article ID: 165257. https://doi.org/10.1155/2015/165257
|
[3]
|
Philip, D., Unni, C., Aromal, S. and Vidhu, V. (2011) Murraya koenigii Leaf-Assisted Rapid Green Synthesis of Silver and Gold Nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78, 899-904. https://doi.org/10.1016/j.saa.2010.12.060
|
[4]
|
Rajashree, S. and Suman, T. (2012) Extracellular Biosynthesis of Gold Nanoparticles Using a Gram-Negative Bacterium Pseudomonas fluorescens. Asian Pacific Journal of Tropical Disease, 2, S796-S799. https://doi.org/10.1016/S2222-1808(12)60267-9
|
[5]
|
Mishraa, A., Tripathy, S. and Yun, S. (2012) Fungus Mediated Synthesis of Gold Nanoparticles and Their Conjugation with Genomic DNA Isolated from Escherichia coli and Staphylococcus aureus. Process Biochemistry, 47, 701-711.
https://doi.org/10.1016/j.procbio.2012.01.017
|
[6]
|
Sathish, K., Amutha, R., Arumugam, P. and Berchmans, S. (2011) Synthesis of Gold Nanoparticles: An Ecofriendly Approach Using Hansenula anomala. ACS Applied Materials Interfaces, 3, 1418-1425. https://doi.org/10.1021/am200443j
|
[7]
|
Rajeshkumar, S., Malarkodi, C., Gnanajobitha, G., Paulkumar, K., Vanaja, M., Kannan, C. and Annadurai, G. (2013) Seaweed-Mediated Syntheses of Gold Nanoparticles Using Turbinaria conoides and Its Characterization. Journal of Nanostructure in Chemistry, 3, 44-49.
https://doi.org/10.1186/2193-8865-3-44
|
[8]
|
Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T. and Mohan, N. (2010) Synthesis of Silver Nanoparticles Using Acalypha indica Leaf Extracts and Its Antibacterial Activity against Water Borne Pathogens. Colloids and Surfaces B: Biointerfaces, 76, 50-56. https://doi.org/10.1016/j.colsurfb.2009.10.008
|
[9]
|
Zaki, S., ElKady, M., Farag, S. and Abd-El-Haleem, D. (2012) Determination of the Effective Origin Source for Nanosilver Particles Produced by Escherichia coli Strain S78 and Its Application as Antimicrobial Agent. Materials Research Bulletin, 47, 4286-4290.
https://doi.org/10.1016/j.materresbull.2011.06.025
|
[10]
|
Correa-Lianten, D.N., Munoz-Ibacache, S.A., Castro, M.E., Munoz, P.A. and Blamey, J.M. (2013) Gold Nanoparticles Synthesized by Geobacillus sp. Strain ID17 a Thermophilic Bacterium Isolated from Deception Island, Antarctica. Microbial Cell Factories, 12, 75-80.
https://doi.org/10.1186/1475-2859-12-75
|
[11]
|
Shankar, S., Rai, A., Ahmad, A. and Sastry, M. (2004) Rapid Synthesis of Au, Ag, and Bimetallic Au Core-Ag Shell Nanoparticles Using Neem (Azadirachta indica) Leaf Broth. Journal of Colloid and Interface Science, 275, 496-502.
https://doi.org/10.1016/j.jcis.2004.03.003
|
[12]
|
Mubarak, A., Thajuddin, N., Jeganathan, K. and Gunasekaran, M. (2011) Plant Extract Mediated Synthesis of Silver and Gold Nanoparticles and Its Antibacterial Activity against Clinically Isolated Pathogens. Colloids and Surfaces B: Biointerfaces, 85, 360-365.
https://doi.org/10.1016/j.colsurfb.2011.03.009
|
[13]
|
Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., Hong, N.J. and Chen, C. (2007) Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum camphora Leaves. Nanotechnology, 18, 105104-105115.
https://doi.org/10.1088/0957-4484/18/10/105104
|
[14]
|
Noruzi, M., Zare, D., Khoshnevisan, K. and Davoodi, D. (2011) Rapid Green Synthesis of Gold Nanoparticles Using Rosa hybrida Petal Extract at Room Temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 1461-1465.
https://doi.org/10.1016/j.saa.2011.05.001
|
[15]
|
Adavallan, K. and Krishnakumar, N. (2014) Mulberry leaf Extract Mediated Synthesis of Gold Nanoparticles and Its Anti-Bacterial Activity against Human Pathogens. Advances in Natural Sciences: Nanoscience and Nanotechnology, 5, Article ID: 025018.
https://doi.org/10.1088/2043-6262/5/2/025018
|
[16]
|
Im, A.R., Han, L., Kim, E.R., Kim, J., Kim, Y.S. and Park, Y. (2012) Enhanced Antibacterial Activities of Leonuri herba Extracts Containing Silver Nanoparticles. Phytotherapy Research, 26, 1249-1255. https://doi.org/10.1002/ptr.3683
|
[17]
|
Singh, P.K. and Kundu, S. (2013) Biosynthesis of Elixir of Life (Gold Nanoparticles) from Plants. Journal of Environmental Nanotechnology, 2, 52-62.
|
[18]
|
Prathna, T., Chandrasekaran, N., Raichur, A. and Mukherjee, A. (2011) Biomimetic Synthesis of Silver Nanoparticles by Citrus limon (Lemon) Aqueous Extract and Theoretical Prediction of Particle Size. Colloids and Surfaces B: Biointerfaces, 82, 152-159.
https://doi.org/10.1016/j.colsurfb.2010.08.036
|
[19]
|
Khalil, M., Ismail, E. and Magdoub, F. (2012) Biosynthesis of Au Nanoparticles Using Olive Leaf Extract: 1st Nano Updates. Arabian Journal of Chemistry, 5, 431-437.
https://doi.org/10.1016/j.arabjc.2010.11.011
|
[20]
|
Majumdar, R., Bag, B.G. and Maity, N. (2013) Acacia nilotica (Babool) Leaf Extract Mediated Size-Controlled Rapid Synthesis of Gold Nanoparticles and Study of Its Catalytic Activity. International Nano Letters, 3, 53. https://doi.org/10.1186/2228-5326-3-53
|
[21]
|
Arunachalam, K. and Annamalai, S. (2013) Chrysopogon zizanioides Aqueous Extract Mediated Synthesis, Characterization of Crystalline Silver and Gold Nanoparticles for Biomedical Applications. International Journal of Nanomedicine, 8, 2375-2384.
https://doi.org/10.2147/IJN.S44076
|
[22]
|
Kumar, G., Sangita, M., Bappadity, M. and Kiran, M. (2011) Phytochemical Evaluvation of Methanolic Extract of Zizyphus xylopyrus. International Journal of Drug Discovery and Herbal Research, 1, 231-233.
|
[23]
|
Tajdidzadeh, M., Azmi, B.Z., Yunus, W.M., et al. (2014) Synthesis of Silver Nanoparticles Dispersed in Various Aqueous Media Using Laser Ablation. The Scientific World Journal, 2014, Article ID: 324921, 7 p.
|
[24]
|
Devi, L.S. and Joshi, S.R. (2015) Ultrastructures of Silver Nanoparticles Biosynthesized Using Endophytic Fungi. Journal of Microscopy and Ultrastructure, 3, 29-37.
https://doi.org/10.1016/j.jmau.2014.10.004
|
[25]
|
Yousef, N.M.H. (2014) Characterization and Antimicrobial Activity of Silver Nanoparticles Synthesized by Rice Straw Utilizing Bacterium (Lysinibacillus fusiformis). International Journal of Development Research, 4, 1875-1879.
|
[26]
|
Moharram, A.H., Mansour, S.A., Hussein, M.A. and Rashad, M. (2014) Direct Precipitation and Characterization of ZnO Nanoparticles. Journal of Nanomaterials, 2014, Article ID: 716210, 5 p.
|
[27]
|
Sharma, G., Dut Jasuja, N., Rajgovind, Singhal, P. and Joshi, S.C. (2014) Synthesis, Characterization and Antimicrobial Activity of Abelia grandiflora Assisted AgNPs. Journal of Microbial & Biochemical Technology, 6, 274-278.
|
[28]
|
Lu, F., Gao, Y., Huang, J., Sun, D. and Li, Q. (2014) Roles of Biomolecules in the Biosynthesis of Silver Nanoparticles: Case of Gardenia jasminoides Extract. Chinese Journal of Chemical Engineering, 22, 706-712. https://doi.org/10.1016/S1004-9541(14)60086-0
|
[29]
|
Ibrahim, H.M.M. (2015) Green Synthesis and Characterization of Silver Nanoparticles Using Banana Peel Extract and Their Antimicrobial Activity against Representative Microorganisms. Journal of Radiation Research and Applied Sciences, 8, 265-275.
https://doi.org/10.1016/j.jrras.2015.01.007
|
[30]
|
Mallikarjuna, K., Sushma, J.N., Narasimha, G., Manoj, L. and Raju, B.D.P. (2014) Phytochemical Fabrication and Characterization of Silver Nanoparticles by Using Pepper leaf Broth. Arabian Journal of Chemistry, 7, 1099-1103.
https://doi.org/10.1016/j.arabjc.2012.04.001
|
[31]
|
Agnihotri, S., Mukherji, S. and Mukherji, S. (2014) Size-Controlled Silver Nanoparticles Synthesized over the Range 5 -100 nm Using the Same Protocol and Their Antibacterial Efficacy. RSC Advances, 4, 3974-3983. https://doi.org/10.1039/C3RA44507K
|
[32]
|
Haider, A. and Kang, I. (2015) Preparation of Silver Nanoparticles and Their Industrial and Biomedical Applications: A Comprehensive Review. Advances in Materials Science and Engineering, 2015, Article ID: 165257.
|
[33]
|
Roopan, S.M., Madhumitha, R.G., Rahuman, A.A., Kamaraj, C., Bharathi, A. and Surendra, T.V. (2013) Low-Cost and Eco-Friendly Phyto-Synthesis of Silver Nanoparticles Using Cocos nucifera Coir Extract and Its Larvicidal Activity. Industrial Crops and Products, 43, 631-635. https://doi.org/10.1016/j.indcrop.2012.08.013
|
[34]
|
Joy Prabu, H. and Johnson, I. (2015) Plant-Mediated Biosynthesis and Characterization of Silver Nanoparticles by Leaf Extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovate. Karbala International Journal of Modern Science, 1, 237-246. https://doi.org/10.1016/j.kijoms.2015.12.003
|
[35]
|
Dong, C., Zhang, X. and Cai, H. (2014) Green Synthesis of Monodisperse Silver Nanoparticles Using Hydroxy Propyl Methyl Cellulose. Journal of Alloys and Compounds, 583, 267-271. https://doi.org/10.1016/j.jallcom.2013.08.207
|
[36]
|
Mohammadlou, M., Maghsoudi, H. and Jafarizadeh-Malmiri, H. (2015) A Review on Green Silver Nanoparticles Based on Plants: Synthesis, Potential Applications and Eco-Friendly Approach. International Food Research Journal, 23, 446-463.
|
[37]
|
Khatami, M., Pourseyed, S., Khatami, M., Hamidi1, H., Zaeifi, M. and Soltani, L. (2015) Synthesis of Silver Nanoparticles Using Seed Exudates of Sinapis arvensis as a Novel Bioresource, and Evaluation of Their Antifungal Activity. Bioresources and Bioprocessing, 2, 19. https://doi.org/10.1186/s40643-015-0043-y
|
[38]
|
Hungund, B.S., Dhulappanavar, G.R. and Ayachit, N.H. (2015) Comparative Evaluation of Antibacterial Activity of Silver Nanoparticles Biosynthesized Using Fruit Juices. Journal of Nanomedicine and Nanotechnology, 6, 271. https://doi.org/10.4172/2157-7439.1000271
|
[39]
|
Thomas, R., Janardhanan, A., Varghese, R.T., Soniya, E.V., Mathew, J. and Radhakrishnan, E.K. (2014) Antibacterial Properties of Silver Nanoparticles Synthesized by Marine Ochrobactrum sp. Brazilian Journal of Microbiology, 45, 1221-1227.
https://doi.org/10.1590/S1517-83822014000400012
|
[40]
|
Chitra, K. and Annadurai, G. (2014) Antibacterial Activity of pH-Dependent Biosynthesized Silver Nanoparticles against Clinical Pathogen. BioMed Research International, 2014, Article ID: 725165.
|
[41]
|
Balashanmugam, P. and Kalaichelvan, P.T. (2015) Biosynthesis Characterization of Silver Nanoparticles Using Cassia roxburghii DC. Aqueous Extract, and Coated on Cotton Cloth for Effective Antibacterial Activity. International Journal of Nanomedicine, 10, 87-97.
https://doi.org/10.2147/IJN.S79984
|
[42]
|
Paredes, D., Ortiz, C. and Torres, R. (2014) Synthesis, Characterization, and Evaluation of Antibacterial Effect of Ag Nanoparticles against Escherichia coli O157:H7 and Methicillin-Resistant Staphylococcus aureus (MRSA). International of Journal Nanomedicine, 9, 1717-1729.
|
[43]
|
Nasim, K. and Asghar, T. (2014) Antibacterial Effect of Silver Nanoparticles on Acinetobacter Baumannii. Iranian Journal of Public Health, 43, 39.
|
[44]
|
Singh, K., Panghal, M., Kadyan, S., Chaudhary, U. and Yadav, J.P. (2014) Antibacterial Activity of Synthesized Silver Nanoparticles from Tinospora cordifolia against Multi Drug Resistant Strains of Pseudomonas aeruginosa Isolated from Burn Patients. Journal of Nanomedicine and Nanotechnology, 5, 2. https://doi.org/10.4172/2157-7439.1000192
|
[45]
|
Wu, D., Fan, W., Kishen, A., Gutmann, J.L. and Fan, B. (2014) Evaluation of the Antibacterial Efficacy of Silver Nanoparticles against Enterococcus faecalis Biofilm. Journal of Endodontics, 40, 285-290. https://doi.org/10.1016/j.joen.2013.08.022
|
[46]
|
Tamayo, L.A., Zapata, P.A., Vejar, N.D., Azocar, M.I., Gulppi, M.A., Zhou, X., Thompson, G.E., Rabagliati, F.M. and Paez, M.A. (2014) Release of Silver and Copper Nanoparticles from Polyethylene Nanocomposites and Their Penetration into Listeria monocytogenes. Materials Science and Engineering: C, 40, 24-31. https://doi.org/10.1016/j.msec.2014.03.037
|
[47]
|
Collins, T.L., Markus, E.A., Hassett, D.J. and Robinson, J.B. (2010) The Effect of a Cationic Porphyrin on Pseudomonas aeruginosa Biofilms. Current Microbiology, 61, 411-416.
https://doi.org/10.1007/s00284-010-9629-y
|
[48]
|
Bankalgi, S.C., Londonkar, R.L., Madire, U. and Tukappa, N.K.A. (2016) Biosynthesis, Characterization and Antibacterial Effect of Phenolics-Coated Silver Nanoparticles Using Cassia javanica L. Journal of Cluster Science, 27, 1485-1497.
https://doi.org/10.1007/s10876-016-1016-9
|
[49]
|
Van Dong, P., Ha, C.H., Binh, L.T. and Kasbohm, J. (2012) Chemical Synthesis and Antibacterial Activity of Novel-Shaped Silver Nanoparticles. International Nano Letters, 2, 9.
https://doi.org/10.1186/2228-5326-2-9
|
[50]
|
Panacek, A., Smekalova, M., Kilianova, M., Prucek, R., Bogdanova, K., Vecerová, R., et al. (2015) Strong and Nonspecific Synergistic Antibacterial Efficiency of Antibiotics Combined with Silver Nanoparticles at Very Low Concentrations Showing No Cytotoxic Effect. Molecules, 21, E26.
|
[51]
|
Zhang, M., Zhang, K., De Gusseme, B., Verstraete, W. and Field, R. (2014) The Antibacterial and Anti-Biofouling Performance of Biogenic Silver Nanoparticles by Lactobacillus fermentum. Biofouling, 30, 347-357. https://doi.org/10.1080/08927014.2013.873419
|