[1]
|
J. Cui, “Permanence of Predator-Prey System with Periodic Coef?cients,” Mathematical and Computer Modelling, Vol. 42, No. 1-2, 2005, pp. 87-98.
doi:10.1016/j.mcm.2005.03.001
|
[2]
|
Z. Teng, “Uniform Persistence of the Periodic Predator-Prey Lotka-Volterra Systems,” Applied Analysis, Vol. 72, 1998, pp. 339-352.
|
[3]
|
Y. Kuang and H. I. Freedman, “Uniqueness of Limit Cycles in Cause Type Models of Predator-Prey System,” Mathematical Biosciences, Vol. 88, 1988, pp. 67-84.
doi:10.1016/0025-5564(88)90049-1
|
[4]
|
K. S. Cheng, “Uniqueness of a Limit Cycle for a Predator-Prey System,” SIAM Journal on Mathematical Analysis, Vol. 12, 1981, pp. 541-548. doi:10.1137/0512047
|
[5]
|
H. I. Freedman, “Deterministic Mathematical Models in Population Ecology,” Marcel Dekker, New York, 1980.
|
[6]
|
S. B. Hsu and T. W. Huang, “Global Stability for a Class of Predator-Prey Systems,” SIAM Journal on Mathematical Analysis, Vol. 55, No. 3, 1995, pp. 763-783.
doi:10.1137/S0036139993253201
|
[7]
|
H. R. Akcakaya, “Population Cycles of Mammals: Evidence for a Ratio-Dependent Predation Hypothesis,” Ecological Monographs, Vol. 62, No. 1, 1992, pp. 119- 142. doi:10.2307/2937172
|
[8]
|
R. Arditi and L. R. Ginzburg, “Coupling in Predator-Prey Dynamics: Ratio-Dependence,” Journal of Theoretical Biology, Vol. 139, No. 3, 1989, pp. 311-326.
doi:10.1016/S0022-5193(89)80211-5
|
[9]
|
Y. Kuang and E. Beretta, “Global Qualitative Analysis of a Ratio-Dependence Predator-Prey System,” Journal of Mathematical Biology, Vol. 36, No. 4, 1998, pp. 389-406.
doi:10.1007/s002850050105
|
[10]
|
H. Li and Y. Takeuchi, “Dynamics of a Nonautonomous Density Dependent and Ratio-Dependent Predator-Prey System,” Journal of Mathematical Analysis and Applications, Vol. 374, No. 1, 2011, pp. 644-654.
doi:10.1016/j.jmaa.2010.08.029
|
[11]
|
H. Li and Y. Takeuchi, “Stability for Ratio-Dependent Predator-Prey System with Density Dependent,” Proceedings of the 7th Conference on Biological Dynamic System and Stability of Differential Equation, Chongqing, 14-16 May 2010, pp. 144-147.
|
[12]
|
Z. Lu and H. Li, “Stability of Ratio-Dependent Delayed Predator-Prey System with Density Regulation,” Journal of Biomathematics, Vol. 20, No. 3, 2005, pp. 264-272.
|
[13]
|
P. Kratina, M. Vos, A. Bateman and B. R. Anholt, “Functional Responses Modified by Predator Density,” Oecologia, Vol. 159, No. 2, 2009, pp. 425-433.
|