[1]
|
M. Al-Baali, “Descent Property and Global Convergence of the Fletcher-Reeves Method with Inexact Line Search,” IMA Journal of Numerical Analysis, Vol. 5, No. 1, 1985, pp. 121-124. doi:10.1093/imanum/5.1.121
|
[2]
|
Y. F. Hu and C. Storey, “Global Convergence Result for Conjugate Gradient Method,” Journal of Optimization Theory and Applications, Vol. 71, No. 2, 1991, pp. 399-405. doi:10.1007/BF00939927
|
[3]
|
G. Yu, Y. Zhao and Z. Wei, “A Descent Nonlinear Conjugate Gradient Method for Large-Scale Unconstrained Optimization,” Applied Mathematics and Computation, Vol. 187, No. 2, 2007, pp. 636-643.
doi:10.1016/j.amc.2006.08.087
|
[4]
|
Z. Wei, S. Yao and L. Liu, “The Convergence Properties of Some New Conjugate Gradient Methods,” Applied Mathematics and Computation, Vol. 183, No. 2, 2006, pp. 1341-1350. doi:10.1016/j.amc.2006.05.150
|
[5]
|
G. Zoutendijk, “Nonlinear Programming, Computational Me-thods,” In: J. Abadie, Ed., Integer and Nonlinear Programming, Amsterdam, 1970, pp. 37-86.
|
[6]
|
J. C. Gilbert and J. Nocedal, “Global Convergence Properties of Conjugate Gradient Methods for Optimization,” SIAM Journal Optimization, Vol. 2, No. 1, 1992, pp. 21-42. doi:10.1137/0802003
|
[7]
|
Y. H. Dai and Y. Yuan, “Nonlinear Conjugate Gradient Me-thods,” Shanghai Scientific and Technical Publishers, Shanghai, 1998, pp. 37-48.
|
[8]
|
W. Hock and K. Schittkowski, “Test Examples for Nonlinear Programming Codes,” Journal of Optimization Theory and Applications, Vol. 30, No. 1, 1981, pp. 127-129. doi:10.1007/BF00934594
|