[1]
|
Clark, R.A.F. (1985) Cutaneous Tissue Repair: Basic Biological Considerations. I. Journal of the American Academy of Dermatology, 13, 701-725. http://dx.doi.org/10.1016/S0190-9622(85)70213-7
|
[2]
|
LeGrand, E.X. (1998) Preclinical Promise of Becaplemin (rhPDGF-BB) in Wound Healing. The American Journal of Surgery, 176, 48S-54S. http://dx.doi.org/10.1016/S0002-9610(98)00177-9
|
[3]
|
Robson, M.C., Phillips, L.G., Lawrence, W.T., Bishop, J.B., Youngerman, J.S., Hayward, P.G., Broemeling, L.D. and Heggers, J.P. (1992) The Safety and Effect of Topically Applied Recombinant Basic Fibroblast Growth Factor on Healing of Chronic Pressure Sores. Annals of Surgery, 216, 401-408. http://dx.doi.org/10.1097/00000658-199210000-00002
|
[4]
|
Falanga, V., Eaglstein, W.H., Bucalo, B., Kartz, M.H., Harris, B. and Carson, P. (1992) Topical Use of Human Recombinat Epidermal Growth Factor (h-EGF) in Venous Ulcers. The Journal of Dermatologic Surgery and Oncology, 18, 604-606. http://dx.doi.org/10.1111/j.1524-4725.1992.tb03514.x
|
[5]
|
Corral, C.J., Siddiqui, A., Wu, L., Farrell, C.L., Lyons, D. and Mustoe, T.A. (1999) Vascular Endothelial Growth Factor Is More Important than Basic Fibroblastic Growth Factor during Ischemic Wound Healing. Archives of Surgery, 134, 200-205. http://dx.doi.org/10.1001/archsurg.134.2.200
|
[6]
|
Nayeri, F., Stromberg, T., Larsson, M., Brudin, L., Soderstrom, C. and Forsberg, P. (2002) Hepatocyte Growth Factor May Accelerate Healing in Chronic Leg Ulcers: A Pilot Study. Journal of Dermatological Treatment, 13, 81-86. http://dx.doi.org/10.1080/095466302317584449
|
[7]
|
Winter, G.D. (1962) Formation of the Scab and the Rate of Epithelization of Superficial Wounds in the Skin of the Young Domestic Pig. Nature, 193, 293-294. http://dx.doi.org/10.1038/193293a0
|
[8]
|
Heimbach, D.M. (1987) Early Burn Excision and Grafting. Surgical Clinics of North America, 67, 93-107. http://dx.doi.org/10.1016/S0039-6109(16)44135-6
|
[9]
|
Tompkins, R.G., Remensnyder, J.P., Burke, J.F., Tomkins, D.M., Hilton, J.F., Schoenfeld, D.A., Behringer, G.E., Bondoc, C.C., Briggs, S.E. and Quinby, W.C. (1988) Significant Reductions in Mortality for Children with Burn Injuries through the Use of Prompt Eschar Excition. Annals of Surgery, 208, 577-585. http://dx.doi.org/10.1097/00000658-198811000-00006
|
[10]
|
Herndon, D.N., Barrow, R.E., Rutan, R.L., Rutan, T.C., Desai, M.H. and Abston, S.Y. (1989) A Comparison of Conservative versus Early Excision Therapy in Severely Burned Patients. Annals of Surgery, 209, 547-553. http://dx.doi.org/10.1097/00000658-198905000-00006
|
[11]
|
Tavis, M.J., Thornton, J.W., Bartlett, R.H., Roth, J.C. and Woodroof, E.A. (1980) A New Composite Skin Prosthesis. Burns, 7, 123-130. http://dx.doi.org/10.1016/0305-4179(80)90038-8
|
[12]
|
Burke, J.F., Yannas, I.V., Quinby, W.C., Bondoc, C.C. and Jung, W.K. (1981) Successful Use of a Physiologically Acceptable Artificial Skin in the Treatment of Extensive Burn Injury. Annals of Surgery, 194, 413-428. http://dx.doi.org/10.1097/00000658-198110000-00005
|
[13]
|
Yannas, I.V., Burke, J.F., Orgill, D.P. and Skrabut, E.M. (1982) Wound Tissue Can Utilize a Polymeric Template to Synthesize a Functional Extension of Skin. Science, 215, 174-176. http://dx.doi.org/10.1126/science.7031899
|
[14]
|
Suzuki, S., Matsuda, K., Isshiki, N., Tamada, Y., Yoshioka, K. and Ikada, Y. (1990) Clinical Evaluation of a New Bilayer Artificial Skin Composed of Collagen Sponge and Silicone Layer. British Journal of Plastic Surgery, 43, 47-54. http://dx.doi.org/10.1016/0007-1226(90)90044-Z
|
[15]
|
Koide, M., Osaki, K., Konishi, J., Oyamada, K., Katakura, T., Takahashi, A. and Yoshizato, K. (1993) A New Type of Biomaterial for Artificial Skin: Dehydrothermally Cross-Linked Composites of Fibrillar and Denatured Collagen. Journal of Biomedical Materials Research, 27, 79-87. http://dx.doi.org/10.1002/jbm.820270111
|
[16]
|
Kuroyanagi, Y., Kim, E. and Shioya, N. (1990) Evaluation of Synthetic Wound Dressing Capable of Releasing Silver Sulfadiazine. Journal of Burn Care & Rehabilitation, 11, 106-115.
|
[17]
|
Kuroyanagi, Y., Kim, E., Kenmochi, M., Ui, K., Kageyama, H., Nakamura, M., Takeda, A. and Shioya, N. (1992) A Silver Sulfadiazine Impregnated Synthetic Wound Dressing Composed of Poly-L-Leucine Spongy Matrix. Journal of Applied Biomaterials, 3, 153-161. http://dx.doi.org/10.1002/jab.770030211
|
[18]
|
Matsuda, K., Suzuki, S., Isshiki, N., Yoshioka, K., Okada, T., Hyon, S.H. and Ikada, Y. (1991) A Bilayer “Artificial Skin” Capable of Sustained Release of an Antibiotic. British Journal of Plastic Surgery, 44, 142-146. http://dx.doi.org/10.1016/0007-1226(91)90049-P
|
[19]
|
Kuroyanagi, Y., Shiraishi, A., Shirasaki, Y., Nakakita, N., Yasutomi, Y., Takano, Y. and Shioya, N. (1994) Development of New Wound Dressing with Antimicrobial Delivery Capability. Wound Repair and Regeneration, 2, 122-129. http://dx.doi.org/10.1046/j.1524-475X.1994.20206.x
|
[20]
|
Kuroyanagi, Y., Kageyama, H., Shioya, N., Ohara, A. and Mikawa, T. (1995) Development of New Wound Dressing Composed of Silver Sulfadiazine-Impregnated Polyurethane Membrane Laminated with a Non-Woven Fabric; Fundamental Studies. Japan Pharmacology & Therapeutics, 23, 25-35.
|
[21]
|
Kuroyanagi, Y., Shioya, N., Nakakita, N., Nakamura, M., Takahashi, H., Yasutomi, Y., Ishihara, S., Kim, E., Kageyama, H., Matsukura, T., Sato, A., Nakajima, H., Anze, M., Ikezawa, Z., Moori, S., Ichiyama, S., Kageyama, M., Hara, H., Wada, H., Okano, E. and Ogino, K. (1995) Development of New Wound Dressing Composed of Silver Sulfadiazine-Impregnated Polyurethane Membrane Laminated with a Non-Woven Fabric; Multi-Center’s Clinical Reports. Japan Pharmacology & Therapeutics, 23, 383-408.
|
[22]
|
Matsumoto, Y. and Kuroyanagi, Y. (2010) Development of Wound Dressing Composed of Hyaluronic Acid Sponge Containing Epidermal Growth Factor. Journal of Biomaterials Science, 21, 715-726. http://dx.doi.org/10.1163/156856209X435844
|
[23]
|
Laurent, T.C. and Fraser, J.R. (1992) Hyaluronan. FASEB Journal, 6, 2397-2404.
|
[24]
|
West, D.C., Hampson, I.N., Arnold, F. and Kumar, S. (1985) Angiogenesis Induced by Degradation Products of Hyaluronic Acid. Science, 228, 1324-1326. http://dx.doi.org/10.1126/science.2408340
|
[25]
|
Sattar, A., Rooney, P., Kumar, S., Pye, D., West, D.C., Scott, I. and Ledger, P. (1994) Application of Angiogenic Oligosaccharides of Hyaluronan Increases Blood Vessel Numbers in Rat Skin. Journal of Investigative Dermatology, 103, 576-579.
|
[26]
|
Lees, V.C., Fan, T.P. and West, D.C. (1995) Angiogenesis in a Delayed Revascularization Model Is Accelerated by Angiogenic Oligosaccharides of Hyaluronan. Lab. Invest, 73, 259-266.
|
[27]
|
Chen, W.Y.J. and Abatangelo, G. (1999) Functions of Hyaluronan in Wound Repair. Wound Repair and Regeneration, 7, 79-89. http://dx.doi.org/10.1046/j.1524-475X.1999.00079.x
|
[28]
|
Pardue, E.L., Ibrahim, S. and Ramamurthi, A. (2008) Role of Hyaluronan in Angiogenesis and Its Utility to Angiogenic Tissue Engineering. Organogenesis, 4, 203-214. http://dx.doi.org/10.4161/org.4.4.6926
|
[29]
|
Cui, X.L., Iwasa, M., Iwasa, Y. and Ogoshi, S. (2000) Arginine-Supplemented Diet Decreases Expression of Inflammatory Cytokines and Improves Survival in Burned Rats. Journal of Parenteral & Enteral Nutrition, 24, 89-96. http://dx.doi.org/10.1177/014860710002400289
|
[30]
|
Ochoa, J.B., Strange, J., Kearney, P., Gellin, G., Endean, E. and Fitzpatrick, E. (2001) Effects of L-Arginine on the Proliferation of T Lymphocyte Subpopulations. Journal of Parenteral & Enteral Nutrition, 25, 23-29. http://dx.doi.org/10.1177/014860710102500123
|
[31]
|
Kirs, S.J. and Barbul, A. (1990) Role of Arginine in Trauma, Sepsis, and Immunity. Journal of Parenteral & Enteral Nutrition, 14, 226S-229S. http://dx.doi.org/10.1177/014860719001400514
|
[32]
|
Zhu, H., Ka, B. and Murad, F. (2007) Nitric Oxide Accelerates the Recovery from Burn Wounds. World Journal of Surgery, 31, 624-631. http://dx.doi.org/10.1007/s00268-007-0727-3
|
[33]
|
Witte, M.B. and Barbul, A. (2003) Arginine Physiology and Its Implication for Wound Healing. Wound Repair and Regeneration, 11, 419-423. http://dx.doi.org/10.1046/j.1524-475X.2003.11605.x
|
[34]
|
Curran, J.N., Winter, D.C. and Bouchier-Hayes, D. (2006) Biological Fate and Clinical Implications of Arginine Metabolism in Tissue Healing. Wound Repair and Regeneration, 14, 376-386. http://dx.doi.org/10.1111/j.1743-6109.2006.00151.x
|
[35]
|
Carpenter, G. and Cohen, S. (1976) Human Epidermal Growth Factor and the Proliferation of Human Fibroblasts. Journal of Cellular Physiology, 88, 227-237. http://dx.doi.org/10.1002/jcp.1040880212
|
[36]
|
Carpenter, G. and Cohen, S. (1979) Epidermal Growth Factor. Annual Review of Biochemistry, 48, 193-216. http://dx.doi.org/10.1146/annurev.bi.48.070179.001205
|
[37]
|
Hong, J.P., Kim, Y.W., Jung, H.D. and Jung, K.I. (2006) The Effect of Various Concentrations of Human Recombinant Epidermal Growth Factor on Split Thickness Skin Wounds. International Wound Journal, 3, 123-132. http://dx.doi.org/10.1111/j.1742-4801.2006.00187.x
|
[38]
|
Lee, A.R. (2005) Enhancing Dermal Matrix Regeneration and Biomechanical Properties of 2nd Degree-Burn Wounds by EGF-Impregnated Collagen Sponge Dressing. Archives of Pharmacal Research, 28, 1311-1316. http://dx.doi.org/10.1007/BF02978217
|
[39]
|
Park, J.S., Kim, J.Y., Cho, J.Y., Kang, J.S. and Yu, Y.H. (2000) Epidermal Growth Factor (EGF) Antagonizes Transforming Growth Factor (TGF)-Beta 1-Induced Collagen Lattice Contraction by Human Skin Fibroblasts. Biological and Pharmaceutical Bulletin, 23, 1521-1523.
|
[40]
|
Matsumoto, Y., Arai, K., Momose, H. and Kuroyanagi, Y. (2009) Development of Wound Dressing Composed of Hyaluronic Acid Sponge Containing Arginine. Journal of Biomaterials Science, 20, 993-1004. http://dx.doi.org/10.1163/156856209X444394
|
[41]
|
Kondo, S. and Kuroyanagi, Y. (2012) Development of Wound Dressing Composed of Hyaluronic Acid and Collagen Sponge with Epidermal Growth Factor. Journal of Biomaterials Science, 23, 629-643. http://dx.doi.org/10.1163/092050611X555687
|
[42]
|
Kondo, S., Niiyama, H., Yu, A. and Kuroyanagi, Y. (2012) Evaluation of a Wound Dressing Composed of Hyaluronic Acid and Collagen Sponge Containing Epidermal Growth Factor in Diabetic Mice. Journal of Biomaterials Science, 23, 1729-1740.
|
[43]
|
Yu, A., Matsuda, Y., Takeda, A., Uchinuma, E. and Kuroyaangi, Y. (2012) Effect of EGF and bFGF on Fibroblast Proliferation and Angiogenic Cytokine Production from Cultured Dermal Substitutes. Journal of Biomaterials Science, 23, 1315-1324.
|
[44]
|
Postlethwaite, A.E., Seyer, J.M. and Kang, A.H. (1978) Chemotactic Attraction of Human Fibroblasts to Type I, II, and III Collagens and Collagen-Derived Peptides. Proceedings of the National Academy of Sciences of the United States of America, 78, 871-875. http://dx.doi.org/10.1073/pnas.75.2.871
|
[45]
|
Wolfort, F.G., Dalton, W.E. and Hoopes, J.E. (1972) Chemical Peel with Trichloracetic Acid. British Journal of Plastic Surgery, 25, 333-334. http://dx.doi.org/10.1016/S0007-1226(72)80071-7
|
[46]
|
Coleman III, W.P. and Brody, H.J. (1997) Advances in Chemical Peeling. Dermatologic Clinics, 15, 19-26. http://dx.doi.org/10.1016/S0733-8635(05)70411-3
|
[47]
|
Dinner, M.I. and Artz, J.S. (1998) The Art of the Trichloroacetic Acid Chemical Peel. Clinics in Plastic Surgery, 25, 53-62.
|
[48]
|
Brody, H.J., Monheit, G.D., Resnik, S.S. and Alt, T.H. (2000) A History of Chemical Peeling. Dermatologic Surgery, 26, 405-409. http://dx.doi.org/10.1046/j.1524-4725.2000.00505.x
|
[49]
|
Xin, X., Yang, S., Ingle, G., Zlot, C., Rangell, L., Kowalski, J., Schwall, R., Ferrara, N. and Gerritsen, M.E. (2001) Hepatocyte Growth Factor Enhances Vascular Endothelial Growth Factor-Induce Angiogenesis in Vitro and in Vivo. The American Journal of Pathology, 158, 1111-1120. http://dx.doi.org/10.1016/S0002-9440(10)64058-8
|
[50]
|
Conway, K., Price, P., Harding, K.G. and Jiang, W.G. (2006) The Molecular and Clinical Impact of Hepatocyte Growth Factor, Its Receptor, Activators, and Inhibitors in Wound Healing. Wound Repair and Regeneration, 14, 2-10. http://dx.doi.org/10.1111/j.1524-475x.2005.00081.x
|
[51]
|
Marionnet, C., Vioux-Chagnoleau, C., Pierrard, C., Sok, J., Asselineau, D. and Bernerd, F. (2006) Morphogenesis of Dermal-Epidermal Junction in a Model of Reconstracted Skin: Beneficial Effects of Vitamin C. Experimental Dermatology, 15, 625-633. http://dx.doi.org/10.1111/j.1600-0625.2006.00454.x
|
[52]
|
Lima, C.C., Pereira, A.P.C., Silva, J.R.F., Oliveira, L.S., Resck, M.C.C., Grechi, C.O., Bernardes, M.T.C.P., Olimpio, F.M.P., Santos, A.M.M., Lncerpi, E.K. and Garcia, J.A.D. (2009) Ascorbic Acid for the Healing of Skin Wounds in Rats. Brazilian Journal of Biology, 69, 1195-1201. http://dx.doi.org/10.1590/S1519-69842009000500026
|
[53]
|
Wu, Y.L., Gohda, E., Iwao, M., Matsunaga, T., Nagao, T., Takebe, T. and Yamamoto, I. (1998) Stimulation of Hepatocyte Growth Factor Production by Ascorbic Acid and Its Stable 2-Glucoside. Growth Hormone and IGF Research, 8, 421-428. http://dx.doi.org/10.1016/S1096-6374(98)80313-4
|
[54]
|
Niiyama, H. and Kuroyanagi, Y. (2014) Development of Novel Wound Dressing Composed of Hyaluronic Acid and Collagen Sponge Containing Epidermal Growth Factor and Vitamin C Derivative. Journal of Artificial Organs, 17, 81-87. http://dx.doi.org/10.1007/s10047-013-0737-x
|
[55]
|
Isago, Y., Suzuki, R., Isono, E., Noguchi, Y. and Kuroyanagi, Y. (2014) Development of a Freeze-Dried Skin Care Product Composed of Hyaluronic Acid and Poly(γ-Glutamic Acid) Containing Bioactive Components for Application after Chemical Peels. Open Journal of Regenerative Medicine, 3, 43-53. http://dx.doi.org/10.4236/ojrm.2014.33006
|
[56]
|
Yamamoto, A., Ohno, H. and Kuroyanagi, Y. (2016) Evaluation of Epidermal Growth Factor-Incorporating Skin Care Product in Culture Experiment Using Human Fibroblasts. Open Journal of Regenerative Medicine, 5, 44-54. http://dx.doi.org/10.4236/ojrm.2016.52004
|
[57]
|
Rheinwald, J.G. and Green, H. (1977) Epidermal Growth Factor and the Multiplication of Cultured Human Epidermal Keratinocytes. Nature, 265, 421-424. http://dx.doi.org/10.1038/265421a0
|
[58]
|
Green, H., Kehinde, O. and Thomas, J. (1979) Growth of Cultured Human Epidermal Cells into Multiple Epithelia Suitable for Grafting. Proceedings of the National Academy of Sciences of the United States of America, 76, 5665-5668. http://dx.doi.org/10.1073/pnas.76.11.5665
|
[59]
|
O’Connor, N.E., Muliken, J.G., Banks-Schlegel, S., Keinde, O. and Green, H. (1982) Grafting of Burns with Cultured Epithelium Prepared from Autologous Epidermal Cells. The Lancet, 317, 75-78. http://dx.doi.org/10.1016/S0140-6736(81)90006-4
|
[60]
|
Gallico, G.G., O’Connor, N.E., Compton, C.C., Kehinde, O. and Green, H. (1984) Permanent Coverage of Large Burn Wounds with Autologous Cultured Human Epithelium. The New England Journal of Medicine, 311, 448-451. http://dx.doi.org/10.1056/NEJM198408163110706
|
[61]
|
Cuono, C.B., Langdon, R. and McGuire, J. (1986) Use of Cultured Epidermal Autografts and Dermal Allografts as Skin Replacement after Burn Injury. The Lancet, 327, 1123-1124. http://dx.doi.org/10.1016/S0140-6736(86)91838-6
|
[62]
|
Compton, C.C., Gill, J.M., Bradford, D.A., Regauer, S., Gallico, G.G. and O’Connor, N.E. (1989) Skin Regenerated from Cultured Epithelial Autografts on Full-Thickness Burn Wounds from 6 Days to 5 Years after Grafting. Laboratory Investigation, 60, 600-612.
|
[63]
|
Odessey, R. (1992) Addendum: Multicenter Experience with Cultured Epidermal Autograft for Treatment of Burns. Journal of Burn Care & Rehabilitation, 13, 174-180. http://dx.doi.org/10.1097/00004630-199201000-00038
|
[64]
|
Rue, L.W., Cioffi, W.C., McManus, W.F. and Pruitt, B.A. (1993) Wound Closure and Outcome in Extensively Burned Patients Treated with Cultured Autologous Keratinocytes. Journal of Trauma-Injury Infection & Critical Care, 34, 662-668. http://dx.doi.org/10.1097/00005373-199305000-00008
|
[65]
|
Bell, E., Ehrlich, H.P., Buttle, D.J. and Nakatsuji, T. (1981) Living Tissue Formed in Vitro and Accepted as Skin-Equivalent Tissue of Full Thickness. Science, 211, 1052-1054. http://dx.doi.org/10.1126/science.7008197
|
[66]
|
Bell, E., Ehrlich, H.P., Sher, S., Merrill, C., Sarber, R., Hull, B., Nakatsuji, T. and Church, D. (1981) Development and Use of a Living Skin Equivalent. Plastic & Reconstructive Surgery, 67, 386-392. http://dx.doi.org/10.1097/00006534-198103000-00024
|
[67]
|
Parenteau, N. (1999) Skin: The First Tissue-Engineered Products. Scientific American, 280, 83-84.
|
[68]
|
Hansbrough, J.F., Christine, D. and Hansbrough, W.B. (1992) Clinical Trials of a Living Dermal Tissue Replacement Placed beneath Meshed, Split-Thickness Skin Graft on Excised Burn Wounds. Journal of Burn Care & Rehabilitation, 13, 519-529. http://dx.doi.org/10.1097/00004630-199209000-00004
|
[69]
|
Kuroyanagi, Y., Kenmochi, M., Ishihara, S., Takeda, A., Shiraishi, A., Ootaka, N., Uchinuma, E., Torikai, K. and Shioya, N. (1993) A Cultured Skin Substitute Composed of Fibroblasts and Keratinocytes with a Collagen Matrix: Preliminary Results of Clinical Trials. Annals of Plastic Surgery, 31, 340-349. http://dx.doi.org/10.1097/00000637-199310000-00011
|
[70]
|
Yamashita, R., Kuroyanagi, Y., Nakakita, N., Uchinuma, E. and Shioya, N. (1999) Allogeneic Cultured Dermal Substitute Composed of Spongy Collagen Containing Fibroblasts: Preliminary Clinical Trials. Wounds, 11, 34-44.
|
[71]
|
Yamada, N., Uchinuma, E. and Kuroyanagi, Y. (1999) Clinical Evaluation of an Allogeneic Cultured Dermal Substitute Composed of Fibroblasts within a Spongy Collagen Matrix. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 33, 147-154. http://dx.doi.org/10.1080/02844319950159398
|
[72]
|
Kuroyanagi, Y., Yamada, N., Yamashita, R. and Uchinuma, E. (2001) Tissue-Engineered Product: Allogeneic Cultured Dermal Substitute Composed of Spongy Collagen with Fibroblasts. Artificial Organs, 25, 180-186. http://dx.doi.org/10.1046/j.1525-1594.2001.025003180.x
|
[73]
|
Bell, E. and Rosenberg, M. (1990) The Commercial Use of Cultivated Human Cells. Transplantation Proceedings, 22, 971-974.
|
[74]
|
Kuroyanagi, Y., Kubo, K., Matsui, H., Kim, H.J., Numari, S., Mabuchi, Y. and Kagawa, S. (2004) Establishment of Banking System for Allogeneic Cultured Dermal Substitute. Artificial Organs, 28, 13-21. http://dx.doi.org/10.1111/j.1525-1594.2004.07318.x
|
[75]
|
Kubo, K. and Kuroyanagi, Y. (2003) Characterization of a Cultured Dermal Substitute Composed of a Spongy Matrix of Hyaluronic Acid and Collagen Combined with Fibroblasts. Journal of Artificial Organs, 6, 138-144.
|
[76]
|
Kubo, K. and Kuroyanagi, Y. (2003) Effects of Vascular Endothelial Growth Factor Released from Cultured Dermal Substitute on Proliferation of Vascular Endothelial Cells in Vitro. Journal of Artificial Organs, 6, 267-272. http://dx.doi.org/10.1007/s10047-003-0239-3
|
[77]
|
Kubo, K. and Kuroyanagi, Y. (2004) Development of a Cultured Dermal Substitute Composed of a Spongy Matrix of Hyaluronic Acid and Atelo-Collagen Combined with Fibroblasts: Cryopreservation. Artificial Organs, 28, 182-188. http://dx.doi.org/10.1111/j.1525-1594.2004.47219.x
|
[78]
|
Kubo, K. and Kuroyanagi, Y. (2005) The Possibility of Long-Term Cryopreservation of Cultured Dermal Substitute. Artificial Organs, 29, 800-805. http://dx.doi.org/10.1111/j.1525-1594.2005.00132.x
|
[79]
|
Kubo, K. and Kuroyanagi, Y. (2005) A Study of Cytokines Released from Fibroblasts in Cultured Dermal Substitute. Artificial Organs, 29, 845-849. http://dx.doi.org/10.1111/j.1525-1594.2005.00138.x
|
[80]
|
Hashimoto, A. and Kuroyanagi, Y. (2008) Standardization for Mass Production of Allogeneic Cultured Dermal Substitute by Measuring the Amount of VEGF, bFGF, HGF, TGF-β, and IL-8. Journal of Artificial Organs, 11, 225-231. http://dx.doi.org/10.1007/s10047-008-0436-1
|
[81]
|
Kashiwa, N., Ito, O., Ueda, T., Kubo, K., Matsui, H. and Kuroyanagi, Y. (2004) Treatment of Full-Thickness Skin Defect with Concomitant Grafting of 6-Fold Extended Mesh Auto-Skin and Allogeneic Cultured Dermal Substitute. Artificial Organs, 28, 444-450. http://dx.doi.org/10.1111/j.1525-1594.2004.00009.x
|
[82]
|
Ohtani, T., Okamoto, K., Kaminaka, C., Kishi, T., Sakurane, M., Yamamoto, Y., Ueda, K., Kubo, K., Kuroyanagi, Y. and Furukawa, F. (2004) Digital Gangrene Associated with Idiopathic Hypereosinophilia: Treatment with Allogeneic Cultured Dermal Substitute (CDS). European Journal of Dermatology, 14, 168-171.
|
[83]
|
Moroi, Y., Fujita, S., Fukagawa, S., Mashino, T., Goto, T., Masuda, T., Urabe, K., Kubo, K., Matsui, H., Kagawa, S., Kuroyanagi, Y. and Furue, M. (2004) Clinical Evaluation of Allogeneic Cultured Dermal Substitutes for Intractable Skin Ulcers after Tumor Resection. European Journal of Dermatology, 14, 172-176.
|
[84]
|
Hasegawa, T., Suga, Y., Mizoguchi, M., Muramatsu, S., Mizuno, Y., Haruna, K., Ikeda, S., Kuroyanagi, Y. and Ogawa, H. (2007) Intractable Venous Leg Ulcer Treated Successfully with Allogeneic Cultured Dermal Substitute. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 41, 326-328. http://dx.doi.org/10.1080/02844310600723224
|
[85]
|
Yamada, N., Uchinuma, E. and Kuroyanagi, Y. (2008) Clinical Trial of Allogeneic Cultured Dermal Substitute for Intractable Skin Ulcers of the Lower Leg. Journal of Artificial Organs, 11, 100-103. http://dx.doi.org/10.1007/s10047-008-0406-7
|
[86]
|
Ohara, N., Mihara, S., Nihara, H., Akimoto, N., Madokoro, N., Kawai, M., Noda, H., Hide, M., Matsumoto, Y. and Kuroyanagi, Y. (2010) A Case of Lower-Extremity Deep Burn Wounds with Periosteal Necrosis Successfully Treated by Use of Allogeneic Cultured Dermal Substitute. Journal of Artificial Organs, 13, 101-105. http://dx.doi.org/10.1007/s10047-010-0499-7
|
[87]
|
Taniguchi, T., Amoh, Y., Katsuoka, K. and Kuroyanagi, Y. (2012) Treatment of Intractable Skin Ulcers by Vascular Insufficiency with Allogeneic Cultured Dermal Substitute: A Report of 8 Cases. Journal of Artificial Organs, 15, 77-82. http://dx.doi.org/10.1007/s10047-011-0601-9
|
[88]
|
Yamada, N., Uchinuma, E. and Kuroyanagi, Y. (2012) Clinical Trial of Allogeneic Cultured Dermal Substitutes for Intractable Skin Ulcers. Journal of Artificial Organs, 15, 193-199. http://dx.doi.org/10.1007/s10047-011-0618-0
|